MODELLING OF POSTSEISMIC PROCESSES IN SUBDUCTION ZONES
https://doi.org/10.5800/GT-2012-3-2-0068
Abstract
Large intraplate subduction earthquakes are generally accompanied by prolonged and intense postseismic anomalies. In the present work, viscoelastic relaxation in the upper mantle and the asthenosphere is considered as a main mechanism responsible for the occurrence of such postseismic effects. The study of transient processes is performed on the basis of data on postseismic processes accompanying the first Simushir earthquake on 15 November 2006 and Maule earthquake on 27 February 2010.
The methodology of modelling a viscoelastic relaxation process after a large intraplate subduction earthquake is presented. A priori parameters of the selected model describing observed postseismic effects are adjusted by minimizing deviations between modeled surface displacements and actual surface displacements recorded by geodetic methods through solving corresponding inverse problems.
The presented methodology yielded estimations of Maxwell’s viscosity of the asthenosphere of the central Kuril Arc and also of the central Chile. Besides, postseismic slip distribution patterns were obtained for the focus of the Simushir earthquake of 15 November 2006 (Mw=8.3) (Figure 3), and distribution patterns of seismic and postseismic slip were determined for the focus of the Maule earthquake of 27 February 2010 (Mw=8.8) (Figure 6). These estimations and patterns can provide for prediction of the intensity of viscoelastic stress attenuation in the asthenosphere; anomalous values should be taken into account as adjustment factors when analyzing inter-seismic deformation in order to ensure correct estimation of the accumulated elastic seismogenic potential.
About the Author
Irina S. VladimirovaRussian Federation
Junior Researcher,
249035, Obninsk, Lenin str., 189
References
1. Boschi L., Piersanti A., Spada G., 2000. Global postseismic deformation: Deep earthquakes. Journal of Geophysical Research 105 (B1), 631–652. http://dx.doi.org/10.1029/1999JB900278.
2. Burgmann R., Kogan M.G., Levin V.E., Scholz C.H., King R.W., Steblov G.M., 2001. Rapid aseismic moment release following the 5 December, 1997 Kronotsky, Kamchatka, earthquake. Geophysical Researсh Letters 28 (7), 1331–1334. http://dx.doi.org/10.1029/2000GL012350.
3. Contreras-Reyes, E., Flueh E.R., Grevemeyer I., 2010. Tectonic control on sediment accretion and subduction off south central Chile: Implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes. Tectonics 29 (6), TC6018. http://dx.doi.org/10.1029/2010TC002734.
4. Delouis, B., Nocquet J.-M., Vallée M., 2010. Slip distribution of the February 27, 2010 Mw=8.8 Maule earthquake, Central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophysical Research Letters 37 (17), L17305. http://dx.doi.org/10.1029/2010GL043899.
5. Herring T.A., King R.W., McClusky S.C., 2006. GAMIT/GLOBK Reference Manual Release 10.3. MIT. Available from http://chandler.mit.edu/~simon/gtgk/docs.htm (last accessed May 20, 2012).
6. Hetland E.A., Hager B.H., 2006. The effects of rheological layering on post-seismic deformation. Geophysical Journal International 166 (1), 277–292. http://dx.doi.org/10.1111/j.1365-246X.2006.02974.x.
7. Kogan M.G., Steblov G.M., 2008. Current global plate kinematics from GPS (1995–2007) with the plate-consistent reference frame. Journal of Geophysical Research 113 (B4), B04416. http://dx.doi.org/10.1029/2007JB005353.
8. Kogan M.G., Vasilenko N.F., Frolov D I., Freymueller J T., Steblov G.M., Levin B.W., Prytkov A.S., 2011. The mechanism of postseismic deformation triggered by the 2006–2007 great Kuril earthquakes. Geophysical Research Letters 38 (6), L06304. http://dx.doi.org/10.1029/2011GL046855.
9. Lay T., Ammon C.J., Kanamori H., Koper K.D, Sufri O., Hutko A.R., 2010. Teleseismic inversion for rupture process of the 27 February 2010 Chile (Mw 8.8) earthquake. Geophysical Research Letters 37 (13), L13301. http://dx.doi.org/10.1029/2010GL043379.
10. Marone C.J., Scholz C.H., Bilham R.G., 1991. On the mechanics of earthquake afterslip. Journal of Geophysical Research 96 (B5), 8441–8452. http://dx.doi.org/10.1029/91JB00275.
11. Moreno M.S., Klotz J., Melnick D., Echtler H., Bataille K., 2008. Active faulting and heterogeneous deformation across a megathrust segment boundary from GPS data, south central Chile (36–39°S). Geochemistry, Geophysics, Geosystems 9 (12), Q12024. http://dx.doi.org/10.1029/2008GC002198.
12. Moreno M, Rosenau M., Oncken O., 2010. Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature 467 (7312), 198–202. http://dx.doi.org/10.1038/nature09349.
13. Panet I., Pollitz F., Mikhailov V., Diament M., Banerjee P., Grijalva K., 2010. Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra-Andaman earthquake. Geochemistry, Geophysics, Geosystems 11 (6), Q06008. http://dx.doi.org/10.1029/2009GC002905.
14. Piersanti A., 1999. Postseismic deformation in Chile: Constraints on the asthenospheric viscosity. Geophysical Research Letters 26 (20), 3157–3160. http://dx.doi.org/10.1029/1999GL005375.
15. Pollitz F.F., 1997. Gravitational viscoelastic postseismic relaxation on a layered spherical earth. Journal of Geophysical Research 102 (B8), 17921–17941. http://dx.doi.org/10.1029/97JB01277.
16. Pollitz F.F., 2003. Post-seismic relaxation theory on a laterally heterogeneous viscoelastic model. Geophysical Journal International 155 (1), 57–78. http://dx.doi.org/10.1046/j.1365-246X.2003.01980.x.
17. Pollitz F., Bürgmann R., Banerjee P., 2006. Post-seismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth. Geophysical Journal International 167 (1), 397–420. http://dx.doi.org/10.1111/j.1365-246X.2006.03018.x.
18. Steblov G.M., Grekova T.A., Vasilenko N.F., Prytkov A.S., Frolov D.I., 2010. Dynamics of the Kuril-Kamchatka subduction zone from GPS data. Izvestiya, Physics of the Solid Earth 46 (5), 440–445. http://dx.doi.org/10.1134/S1069351310050095.
19. Steblov G.M., Kogan M G., Levin B.V., Vasilenko N.F., Prytkov A.S., Frolov D.I., 2008. Spatially linked asperities of the 2006–2007 great Kuril earthquakes revealed by GPS. Geophysical Research Letters 35 (22), L22306. http://dx.doi.org/10.1029/2008GL035572.
20. Vladimirova I.S., Steblov G.M., Frolov D.I., 2011. Viscoelastic deformations after the 2006–2007 Simushir earthquakes. Izvestiya, Physics of the Solid Earth 47 (11), 1020–1025. http://dx.doi.org/10.1134/S1069351311100132.
Review
For citations:
Vladimirova I.S. MODELLING OF POSTSEISMIC PROCESSES IN SUBDUCTION ZONES. Geodynamics & Tectonophysics. 2012;3(2):167-178. (In Russ.) https://doi.org/10.5800/GT-2012-3-2-0068