INTEGRATED MONITORING OF HAZARDOUS GEOLOGICAL PROCESSES IN PRIBAIKALYE: PILOT NETWORK AND FIRST RESULTS
https://doi.org/10.5800/GT-2022-13-5-0677
Abstract
The article deals with the first results of integrated geohazard monitoring conducted by the Institute of the Earth’s Crust SB RAS on the territory of Pribaikalye in 2020. The pilot network consists of three sites: "Buguldeika", "Priolkhonye" and "Listvyanka", each of which is equipped with high-precision digital devices including a broadband seismic station, a GPS receiver, deformometers, a sensor of soil radon emanations, and an observation station for the Earth’s electromagnetic environment. This equipment is designed to acquire quantitative information on rock deformation, recent movements and geophysical field variations for solving theoretical and applied problems of geodynamics and seismology, including development of earthquake prediction methods. In the vicinity of the sites, there have been made the hydroisotopic measurements as well as observations over the character of some of exogenous processes. Based on the comprehensive analysis of the seismological, tectonic, deformation and emanation data, acquired also through monitoring, there has been obtained the preliminary characteristics of the Kudarinsky earthquake (December 9, 2020, MW=5.6) that was followed by intensity 5 aftershocks in large cities of the southeastern East Siberia – Irkutsk, Shelekhov, Angarsk, Usolye-Sibirskoe and others. It has been found that the seismic event manifested itself almost in all the fields monitored. This implies the network efficiency for a purposeful study of the precursors of large earthquakes which can initiate the development of other hazardous geological processes in Pribaikalye. The deformation monitoring data show some general patterns of earthquake source evolution which corresponds to the fundamental principles of physical mesomechanics. This opens the prospects for diagnostics of the final phase of earthquake generation in the context of meta-instable state of deformation process and rock mass disintegration.
Keywords
About the Authors
K. Zh. SeminskyRussian Federation
128 Lermontov St, Irkutsk 664033
A. A. Dobrynina
Russian Federation
128 Lermontov St, Irkutsk 664033
126а Lermontov St, Irkutsk 664033
S. A. Bornyakov
Russian Federation
128 Lermontov St, Irkutsk 664033
V. A. Sankov
Russian Federation
128 Lermontov St, Irkutsk 664033
A. V. Pospeev
Russian Federation
128 Lermontov St, Irkutsk 664033
S. V. Rasskazov
Russian Federation
128 Lermontov St, Irkutsk 664033
N. P. Perevalova
Russian Federation
126а Lermontov St, Irkutsk 664033
I. K. Seminskiy
Russian Federation
128 Lermontov St, Irkutsk 664033
A. V. Lukhnev
Russian Federation
128 Lermontov St, Irkutsk 664033
A. A. Bobrov
Russian Federation
128 Lermontov St, Irkutsk 664033
E. P. Chebykin
Russian Federation
128 Lermontov St, Irkutsk 664033
3 Ulan-Batorskaya St, Irkutsk 664033
I. K. Edemskiy
Russian Federation
126а Lermontov St, Irkutsk 664033
A. M. Ilyasova
Russian Federation
128 Lermontov St, Irkutsk 664033
D. V. Salko
Russian Federation
128 Lermontov St, Irkutsk 664033
A. V. Sankov
Russian Federation
128 Lermontov St, Irkutsk 664033
S. A. Korol
Russian Federation
128 Lermontov St, Irkutsk 664033
References
1. Afraimovich E.L., Palamartchouk K.S., Perevalova N.P., 1998. GPS Radio Interferometry of Travelling Ionospheric Disturbances. Journal of Atmospheric and Solar-Terrestrial Physics 60 (12), 1205–1223. https://doi.org/10.1016/S1364-6826(98)00074-1.
2. Bornyakov S.A., Dobrynina A.A., Seminsky K.Zh., Sankov V.A., Radziminovich N.A., Salko D.V., Shagun A.N., 2021. The Bystrinskii Earthquake in the Southern Baikal Region (Sep. 21, 2020, Mw=5.4): General Characteristics, Basic Parameters, and Deformation Signs of the Transition of the Focus to the Meta-Unstable State. Doklady Earth Sciences 498, 427–431. https://doi.org/10.1134/S1028334X21050044.
3. Bornyakov S.A., Sherman S.I., Gladkov A.S., 2001. Structural Levels of Destruction within a Strike-Slip Fault Zone and Their Reflection in Fractal Dimensions: Results of Physical Modeling. Doklady Earth Sciences 377, 156–159.
4. Brace W.F., Byerlee J.D., 1966. Stick-Slip as a Mechanism for Earthquakes. Science 153 (3739), 900–992. https://doi.org/10.1126/science.153.3739.990.
5. Brune J.N., 1970. Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes. Journal of Geophysical Research 75 (26), 4997–5009. https://doi.org/10.1029/JB075i026p04997.
6. Calais E., Minster J.B., 1995. GPS Detection of Ionospheric Perturbations Following the January 17, 1994, Northridge Earthquake. Geophysical Research Letters 22, 1045–1048. https://doi.org/10.1029/95GL00168.
7. Calais E., Minster J.B., 1996. GPS Detection of Ionospheric Perturbations Following a Space Shuttle Ascent. Geophysical Research Letters 23 (15), 1897–1900. https://doi.org/10.1029/96GL01256.
8. Calais E., Vergnolle M., Sankov V., Lukhnev A., Miroshnichenko A., Amarjargal Sh., Deverchere J., 2003. GPS Measurements of Crustal Deformation in the Baikal-Mongolia Area (1994–2002): Implications on Current Kinematics of Asia. Journal of Geophysical Research: Solid Earth 108 (В10), 2501. https://doi.org/10.1029/2002JB002373.
9. Chebykin E.P., Rasskasov S.V., Vodneva E.N., Ilyasova A.M., Chuvashova I.S., Bornyakov S.A., Seminsky A.K., Snopkov S.V., 2015. First Results of 234U/238U Monitoring in Water from Active Faults on the Western Coast of South Baikal. Doklady Earth Sciences 460, 142–145. https://doi.org/10.1134/S1028334X15020075.
10. Cicerone R.D., Ebel J.E., Britton J., 2009. A Systematic Compilation of Earthquake Precursors. Tectonophysics 476 (3–4) 371–396. https://doi.org/10.1016/j.tecto.2009.06.008.
11. Dobrynina A.A., 2009. Source Parameters of the Earthquakes of the Baikal Rift System. Izvestiya, Physics of the Solid Earth 45, 1093–1109. https://doi.org/10.1134/S1069351309120064.
12. Dobrynina А.А., Perevalova N.P., Sankov V.A., Edemsky I.K., Lukhnev A.V., 2022. Analysis of the Seismic and Ionospheric Effects of the Kudarinsky Earthquake on December 9, 2020. Geodynamics & Tectonophysics 13 (2), 0622 (in Russian) [Добрынина А.А., Перевалова Н.П., Саньков В.А., Едемский И.К., Лухнев А.В. Анализ сейсмических и ионосферных эффектов Кударинского землетрясения 9 декабря 2020 г. // Геодинамика и тектонофизика. 2022. Т. 13. № 2. 0622. https://doi.org/10.5800/GT-2022-13-2s-0622.
13. Dobrynina A.A., Sankov V.A., Chechelnitsky V.V., Déverchère J., 2016. Spatial Changes of Seismic Attenuation and Multiscale Geological Heterogeneity in the Baikal Rift and Surroundings from Analysis of Coda Waves. Tectonophysics 675, 50–68. https://doi.org/10.1016/j.tecto.2016.03.010.
14. Firstov P.P., Makarov E.O., 2018. Dynamics of Subsurface Radon in Kamchatka and Strong Earthquakes. KamSU, Petropavlovsk-Kamchatsky, 148 p. (in Russian) [Фирстов П.П., Макаров Е.О. Динамика подпочвенного радона на Камчатке и сильные землетрясения. Петропавловск-Камчатский: КамГУ, 2018. 148 с.].
15. Ghosh D., Deb A., Sengupta R., 2009. Anomalous Radon Emission as Precursor of Earthquake. Journal of Applied Geophysics 69 (2), 67–81. https://doi.org/10.1016/j.jappgeo.2009.06.001.
16. Gorbatikov A.V., Tsukanov A.A., 2011. Simulation of the Rayleigh Waves in the Proximity of the Scattering Velocity Heterogeneities. Exploring the Capabilities of the Microseismic Sounding Method. Izvestiya, Physics of the Solid Earth 47, 354–369. https://doi.org/10.1134/S1069351311030013.
17. Hofmann-Wellenhof B., Lichtenegger H., Wasle E., 2008. GNSS‐Global Navigation Satellite Systems. Springer, Vienna, 518 p. https://doi.org/10.1007/978-3-211-73017-1.
18. Ishin A.B., Perevalova N.P., Voeykov S.V., Khakhinov V.V., 2017. First Results of Registering Ionospheric Disturbances Obtained with Sibnet Network of GNSS Receivers in Active Space Experiments. Solar-Terrestrial Physics 3 (4), 74–82, https://doi.org/10.12737/stp-34201708.
19. Jacobsen K.S., Dähnn M., 2014. Statistics of Ionospheric Disturbances and Their Correlation with GNSS Positioning Errors at High Latitudes. Journal of Space Weather and Space Climate 4, A27. https://doi.org/10.1051/swsc/2014024.
20. Juan J.M., Sanz J., Rovira-Garcia A., González-Casado G., Ibáñez D., Perez R.O.J., 2018. AATR an Ionospheric Activity Indicator Specifically Based on GNSS Measurements. Journal of Space Weather and Space Climate 8, A14. https://doi.org/10.1051/swsc/2017044.
21. Kuo T., 2014. Correlating Precursory Declines in Groundwater Radon with Earthquake Magnitude. Groundwater 52 (2), 217–224. https://doi.org/10.1111/gwat.12049.
22. Lukhnev A.V., Sankov V.A., Miroshnichenko A.I., Ashurkov S.V., Calais E., 2010. GPS Rotation and Strain Rates in the Baikal–Mongolia Region. Russian Geology and Geophysics 51 (7), 785–793. https://doi.org/10.1016/j.rgg.2010.06.006.
23. Ma J., Guo Y., Sherman S.I., 2014. Accelerated Synergism along a Fault: A Possible Indicator for an Impending Major Earthquake. Geodynamics & Tectonophysics 5 (2), 387–399 (in Russian) [Ма Ц., Гуо Я., Шерман С.И. Ускоренный синергизм вдоль разлома: возможный индикатор неизбежного крупного землетрясения // Геодинамика и тектонофизика. 2014. Т. 5. № 2. С. 387–399]. https://doi.org/10.5800/GT-2014-5-2-0134.
24. Ma J., Sherman S.I., Guo Y.S., 2012. Identification of Meta-Instable Stress State Based on Experimental Study of Evolution of the Temperature Field during Stick-Slip Instability on a 5° Bending Fault. Science China Earth Sciences 55, 869–881. https://doi.org/10.1007/s11430-012-4423-2.
25. Panin V.E., 1998. Foundations of Physical Mesomechanics. Physical Mesomechanics 1 (1), 5–22 (in Russian) [Панин В.Е. Основы физической мезомеханики // Физическая мезомеханика. 1998. Т. 1. № 1. С. 5–22].
26. Panin V.E., Grinyaev Yu.V., Danilov V.I., 1990. Structural Levels of Plastic Deformation and Fracture. Nauka, Novosibirsk, 320 p. (in Russian) [Панин В.Е., Гриняев Ю.В., Данилов В.И. Структурные уровни пластической деформации и разрушения. Новосибирск: Наука, 1990. 320 с.].
27. Panin V.E., Likhachev V.A., Grinyaev Yu.V., 1985. Structural Levels of Deformation in Solids. Nauka, Novosibirsk, 255 p. (in Russian) [Панин В.Е., Лихачев В.А., Гриняев Ю.В. Структурные уровни деформации твердых тел. Новосибирск: Наука, 1985. 255 с.].
28. Perevalova N.P., Sankov V.A., Astafyeva E.I., Zhupityaeva А.S., 2014. Threshold Magnitude for Ionospheric TEC Response to Earthquakes. Journal of Atmospheric and Solar-Terrestrial Physics 108, 77–90. https://doi.org/10.1016/j.jastp.2013.12.014.
29. Pi X., Mannucci A.J., Lindqwister U.J., Ho C.M., 1997. Monitoring of Global Ionospheric Irregularities Using the Worldwide GPS Network. Geophysical Research Letter 24 (18), 2283–2286. https://doi.org/10.1029/97GL02273.
30. Rasskazov S., Ilyasova A., Bornyakov S., Chuvashova I., Chebykin E., 2020а. Responses of a 234U/238U Activity Ratio in Groundwater to Earthquakes in the South Baikal Basin, Siberia. Frontiers of Earth Science 14, 711–737. https://doi.org/10.1007/s11707-020-0821-5.
31. Rasskazov S.V., Ilyasova A.M., Chuvashova I.S., Bornyakov S.A., Orgilyianov A.I., Kovalenko S.N., Seminsky A.K., Popov E.P., Chebykin E.P., 2020b. Hydrogeochemical Zoning of Uranium Isotopes (234U/238U) in the Southern Siberian Paleocontinent: the Role of the South Baikal Reservoir in the Groundwater Formation. Geodynamics & Tectonophysics 11 (3), 632–650 (in Russian) [Рассказов С.В., Ильясова А.М., Чувашова И.С., Борняков С.A., Оргильянов А.И., Коваленко С.Н., Семинский А.К., Попов Е.П., Чебыкин Е.П. Гидрогеохимическая зональность изотопов урана (234U/238U) на юге Сибирского палеоконтинента: роль резервуара Южного Байкала в формировании подземных вод // Геодинамика и тектонофизика. 2020. Т. 11. № 3. С. 632–650]. https://doi.org/10.5800/GT-2020-11-3-0496.
32. Salko D.V., Bornyakov S.A., 2014. The Automated Tool System for Monitoring of Geophysical Parametres on Geodynamic Polygons. Pribory 6, 24–28 (in Russian) [Салко Д.В., Борняков С.А. Автоматизированная система для мониторинга геофизических параметров на геодинамических полигонах // Приборы. 2014. № 6. С. 24–28].
33. Sankov V.A., Parfeevets A.V., Lukhnev A.V., Miroshnichenko A.I., Ashurkov S.V., 2011. Late Cenozoic Geodynamics and Mechanical Coupling of Crustal and Upper Mantle Deformations in the Mongolia-Siberia Mobile Area. Geotectonics 45, 378–393. https://doi.org/10.1134/S0016852111050049.
34. Seminsky K.Zh., Bobrov А.А., 2013. The First Results of Studies of Temporary Variations in Soilradon Activity of Faults in Western Pribaikalie. Geodynamics & Tectonophysics 4 (1), 1–12 (in Russian) [Семинский К.Ж., Бобров А.А. Первые результаты исследований временных вариаций эманационной активности разломов Западного Прибайкалья // Геодинамика и тектонофизика. 2013. Т. 4. № 1. С. 1–12]. https://doi.org/10.5800/GT-2013-4-1-0088.
35. Seminsky K.Zh., Bornyakov S.A., Dobrynina A.A., Radziminovich N.A., Rasskazov S.V., Sankov V.A., Mialle P., Bobrov A.A. et al., 2021. The Bystrinskoe Earthquake in the Southern Baikal Region (21 September, 2020, Mw=5.4): Main Parameters, Precursors, and Accompanying Effects. Russian Geology and Geophysics 62 (5), 589–603. https://doi.org/10.2113/RGG20204296.
36. Tabulevich V.N., Drennova N.N., Potapov V.A., Chernykh E.N., 2001. The Effect of Storm Microseisms on Seismicity in the Shore Zone of Lake Baikal. Russian Geology and Geophysics 42 (8), 1271–1278 (in Russian) [Табулевич В.Н., Дреннова Н.Н., Потапов В.А., Черных Е.Н. Влияние штормовых микросейсм на проявление сейсмичности в береговой зоне озера Байкал // Геология и геофизика. 2001. Т. 42. № 8. С. 1271–1278].
37. Toutain J.-P., Baubron J.-C., 1999. Gas Geochemistry and Seismotectonics: A Review. Tectonophysics 304 (1–2), 1–27. https://doi.org/10.1016/S0040-1951(98)00295-9.
38. Tubanov Ts.A., Sanzhieva D.P.-D., Kobeleva E.A., Predein P.A., Tcydypova L.R., 2021. Kudarinsky Earthquake of 09.12.2020 (Mw=5.5) on Lake Baikal: Results of Instrumental and Macroseismic Observations. Questions of Engineering Seismology 48 (4), 32–47 (in Russian) [Тубанов Ц.А., Санжиева Д.П.-Д., Кобелева Е.А., Предеин П.А., Цыдыпова Л.Р. Кударинское землетрясение 09.12.2020 г. (Mw=5.5) на озере Байкал: результаты инструментальных и макросейсмических наблюдений // Вопросы инженерной сейсмологии. 2021. Т. 48. № 4. С. 32–47]. DOI:10.21455/VIS2021.4-2.
39. Utkin V.I., Mamyrov E., Kan M.V., Krivasheev S.V., Yurkov A.K., Kosyakin I.I., Shishkanov A.N., 2006. Radon Monitoring in the Northern Tien Shan with Application to the Process of Tectonic Earthquake Nucleation. Izvestiya, Physics of the Solid Earth 42, 775–784. https://doi.org/10.1134/S1069351306090072.
40. Voitov G.I., 1998. Monitoring of Atmospheric Radon in the Subsoils of Seismically Active Regions of Central Asia. Izvestiya, Physics of the Solid Earth 1, 23–32.
41. Yasyukevich Yu.V., Vesnin A.M., Perevalova N.P., 2018. SibNet – Siberian Global Navigation Satellite System Network: Current State. Solar-Terrestrial Physics 4 (4), 63–72. https://doi.org/10.12737/stp-44201809.
42. Zhuo Y.-Q., Liu P., Chen S., Guo Y., Ma J., 2018. Laboratory Observations of Tremor-Like Events Generated during Preslip. Geophysical Research Letters 45 (14), 6926–6934. https://doi.org/10.1029/2018GL079201.
43. Zmazek B., Todorovski L., Džeroski S., Vaupotič J., Kobal I., 2003. Application of Decision Trees to the Analysis of Soil Radon Data for Earthquake Prediction. Applied Radiation and Isotopes 58 (6), 697–706. https://doi.org/10.1016/S0969-8043(03)00094-0.
Review
For citations:
Seminsky K.Zh., Dobrynina A.A., Bornyakov S.A., Sankov V.A., Pospeev A.V., Rasskazov S.V., Perevalova N.P., Seminskiy I.K., Lukhnev A.V., Bobrov A.A., Chebykin E.P., Edemskiy I.K., Ilyasova A.M., Salko D.V., Sankov A.V., Korol S.A. INTEGRATED MONITORING OF HAZARDOUS GEOLOGICAL PROCESSES IN PRIBAIKALYE: PILOT NETWORK AND FIRST RESULTS. Geodynamics & Tectonophysics. 2022;13(5):0677. (In Russ.) https://doi.org/10.5800/GT-2022-13-5-0677