MARBLE DIKES IN THE OLKHON COMPOSITE TERRANE (WEST BAIKAL AREA)
https://doi.org/10.5800/GT-2022-13-5-0667
Abstract
Linear or lens-like carbonate (marble) and carbonate-silicate bodies among gabbro and amphibolites within the Krestovsky subterrane of the Olkhon composite terrane (West Baikal Area) are identified as dikes. The dikes commonly dip almost vertically, range in thickness from 20 cm to a few meters, and are up to 100 m long. The Olkhon marble dikes quite often coexist with dolerite dikes and/or granite veins and show signatures of emplacement synchronously with the igneous bodies. The marble dikes differ from mantle carbonatites in mineralogy and chemistry and thus may be derived from sedimentary carbonate rocks molten during collisional events.
The origin of the Olkhon carbonate and carbonate-silicate dikes may be explained with two possible geodynamic scenarios. They may be derived either from Neoproterozoic carbonate sediments upon the Early Precambrian basement of a cratonic block which was involved in collisional events, or from abundant carbonate sedimentary material in an island-arc terrane. Large-scale melting of silicate and carbonate rocks was maintained by heat released from mantle mafic magma intruding into the lower crust. The batches of both crustal (carbonate and granitic) and mantle (mafic) melts intruded late during the collision in a strike-slip tectonic setting.
About the Authors
E. V. SklyarovRussian Federation
128 Lermontov St, Irkutsk 664033
A. V. Lavrenchuk
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
A. M. Mazukabzov
Russian Federation
128 Lermontov St, Irkutsk 664033
References
1. Bell K., Tilton G.R., 2002. Probing the Mantle: The Story from Carbonatites. Eos 83 (25), 273–277. https://doi.org/10.1029/2002EO000190.
2. Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., Sklyarov E.V., Cho M., Sergeev S.A., Demonterova E.I., Mazukabzov A.M., Lepekhina E.N., Cheong W., Kim J., 2017. Pre-Collisional (>0.5 Ga) Complexes of the Olkhon Terrane (Southern Siberia) as an Echo of Events in the Central Asian Orogenic Belt. Gondwana Research 42, 243–263. https://doi.org/10.1016/j.gr.2016.10.016.
3. Donskaya T.V., Sklyarov E.V., Gladkochub D.P., Mazukabzov A.M., Sal’nikova E.B., Kovach V.P., Yakovleva S.Z., Berezhnaya N.G., 2000. The Cisbaikal Collisional Metamorphic Belt. Doklady Earth Sciences 374 (7), 1075–1079 (in Russian) [Донская Т.В., Скляров Е.В., Гладкочуб Д.П., Мазукабзов А.М., Сальникова Е.Б., Ковач В.П., Яковлева С.З., Бережная Н.Г. Прибайкальский коллизионный метаморфический пояс // Доклады РАН. 2000. Т. 374. № 7. С. 1075–1079].
4. Eskin A.S., Ez V.V., Grabkin O.V., Letnikov F.A., Melnikov A.I., Morozov Yu.A., Shkandry B.O., 1979. Correlation of Deep-Seated Processes in the Precambrain Metamorphic Complexes of the Baikal Area. Nauka, Novosibirsk, 118 p. (in Russian) [Ескин A.C., Эз В.В., Грабкин О.В., Летников Ф.А., Мельников А.И., Морозов Ю.А., Шкандрий Б.О. Корреляция эндогенных процессов в метаморфических комплексах докембрия Прибайкалья. Новосибирск: Наука, 1979. 118 с.].
5. Fanelli M.T., Cava N., Wyllie P.J., 1986. Calcite and Dolomite without Portlandite at a New Eutectic in CaO–MgO–CO2–H2O with Applications to Carbonatites. In: Morphology and Phase Equilibria of Minerals. Proceedings of the 13th General Meeting of the International Mineralogical Association (September 19–25, 1982, Varna). Bulgarian Academy of Science, Sofia, Bulgaria, p. 313–322.
6. Fedorovsky V.S., Dobrzhinetskaya L.F., Molchanova T.V., Likhachev A.B., 1993. A New Type of Melange (Baikal, Ol’khon Region). Geotectonics 4, 30–45 (in Russian) [Федоровский В.С., Добржинецкая Л.Ф., Молчанова Т.В., Лихачев А.Б. Новый тип меланжа (Байкал, Ольхонский регион) // Геотектоника. 1993. Т. 27. № 4. С. 30–45].
7. Fedorovsky V.S., Mazukabzov A.M., Sklyarov E.V., Gladkochub D.P., Donskaya T.V., Lavrenchuk A.V., Agatova A.R., Kotov A.B., 2012. Aerospace Geological Map South-West Part of Chernorud and Tomota Zone of Olkhon Region (Lake Baikal). A1TIS Group, Moscow.
8. Fedorovsky V.S., Sklyarov Е.V., 2010. The Olkhon Geodynamic Proving Ground (Lake Baikal): High-Resolution Satellite Data and Geological Maps of New Generation. Geodynamics & Tectonophysics 1 (4), 331–418 (in Russian) [Федоровский В.С., Скляров Е.В. Ольхонский геодинамический полигон (Байкал): аэрокосмические данные высокого разрешения и геологические карты нового поколения // Геодинамика и тектонофизика. 2010. Т. 1. № 4. С. 331–418]. https://doi.org/10.5800/GT-2010-1-4-0026.
9. Fedorovsky V.S., Sklyarov E.V., Gladkochub D.P., Mazukabzov A.M., Donskaya T.V., Lavrenchuk A.V., Starikova A.E., Dobretsov N.L., Kotov A.B., Tevelev Ark.V., 2017. Aerospace Geological Map of the Olkhon Region (Baikal, Russia). Copymaster Center, Moscow.
10. Fedorovsky V.S., Sklyarov E.V., Gladkochub D.P., Mazukabzov A.M., Donskaya T.V., Lavrenchuk A.V., Starikova A.E., Dobretsov N.L., Kotov A.B., Tevelev Ark.V., 2020. Collision System of West Pribaikalie: Aerospace Geological Map of Olkhon Region (Baikal, Russia). Geodynamics & Tectonophysics 11 (3), 447–452 (in Russian) [Федоровский В.С., Скляров Е.В., Гладкочуб Д.П., Мазукабзов А.М., Донская Т.В., Лавренчук А.В., Старикова А.Е., Добрецов Н.Л., Котов А.Б., Тевелев Арк.В. Коллизионная система Западного Прибайкалья: Аэрокосмическая геологическая карта Ольхонского региона (Байкал, Россия) // Геодинамика и тектонофизика. 2020. Т. 11. № 3. С. 447–452]. https://doi.org/10.5800/GT-2020-11-3-0485.
11. Fedorovsky V.S., Sklyarov E.V., Izokh A.E., Kotov A.B., Lavrenchuk A.V., Mazukabzov A.M., 2010. Strike-Slip Tectonics and Subalkaline Mafic Magmatism in the Early Paleozoic Collisional System of the Western Baikal Region. Russian Geology and Geophysics 51 (5), 534–547. https://doi.org/10.1016/j.rgg.2010.04.009.
12. Fedorovsky V.S., Vladimirov A.G., Khain E.V., Kargopolov S.A., Gibsher A.S., Izokh A.E., 1995. Tectonics, Metamorphism, and Magmatism of Collision Zones in Early Paleozoic Orogenic Complexes of Central Asia. Geotectonics 3, 3–22 (in Russian) [Федоровский В.С., Владимиров А.Г., Хаин Е.В., Каргополов С.А., Гибшер А.С., Изох А.Э. Тектоника, метаморфизм и магматизм коллизионных зон каледонид Центральной Азии // Геотектоника. 1995. Т. 29. № 3. С. 3–22].
13. Gladkochub D.P., Donskaya T.V., Fedorovskii V.S., Mazukabzov A.M., Sklyarov E.V., Lavrenchuk A.V., Lepekhina E.N., 2014. Fragment of the Early Paleozoic (~500 Ma) Island Arc in the Structure of the Olkhon Terrane, Central Asian Fold Belt. Doklady Earth Sciences 457, 905–909. https://doi.org/10.1134/S1028334X14080042.
14. Lavrenchuk A.V., Sklyarov E.V., Izokh A.E., Kotov A.B., Sal’nikova E.B., Fedorovsky V.S., Mazukabzov A.M., 2017. Compositions of Gabbro Intrusions in the Krestovsky Zone (Western Baikal Region): A Record of Plume–Suprasubduction Mantle Interaction. Russian Geology and Geophysics 58 (10) 1139–1153. https://doi.org/10.1016/j.rgg.2017.09.001.
15. Lavrenchuk A.V., Sklyarov E.V., Izokh A.E., Kotov A.B., Vasyukova E.A., Fedorovskii V.S., Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., 2019. Birkhin Volcanoplutonic Association, Ol’khon Region, Western Baikal Area: Petrological Criteria of Comagmatic Origin. Petrology 27, 291–306. https://doi.org/10.1134/S0869591119030044.
16. Lentz D.R., 1999. Carbonatite Genesis: A Reexamination of the Role of Intrusion-Related Pneumatolytic Skarn Processes in Limestone Melting. Geology 27 (4), 335–338. https://doi.org/10.1130/0091-7613(1999)027%3C0335:CGAROT%3E2.3.CO;2.
17. Liu Y., Berner Z., Massonne H.-J., Zhong D., 2006. Carbonatite-Like Dykes from the Eastern Himalayan Syntaxis: Geochemical, Isotopic, and Petrogenetic Evidence for Melting of Metasedimentary Carbonate Rocks within the Orogenic Crust. Journal of Asian Earth Sciences 26 (1), 105–120. https://doi.org/10.1016/j.jseaes.2004.10.003.
18. Patino Douce A.E., Harris N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology 39 (4), 689–710. https://doi.org/10.1093/petroj/39.4.689.
19. Pavlovsky E.V., Eskin A.S., 1964. Archean Rocks in the Baikal Region: Composition and Structure. Nauka, Moscow, 128 p. (in Russian) [Павловский Е.В., Ескин А.C. Особенности состава и структуры архея Прибайкалья. М.: Наука, 1964. 128 c.].
20. Roberts D., Zwaan K.B., 2007. Marble Dykes Emanating from Marble Layers in an Amphibolite-Facies, Multiply-Deformed Carbonate Succession, Troms, Northern Norway. Geological Magazine 144 (5), 883–888. https://doi.org/10.1017/S0016756807003810.
21. Sklyarov E.V. (Ed.), 2005. Structural and Tectonic Correlation across the Central Asia Orogenic Collage: North-Eastern Segment. Guidebook and Abstract Volume of the Siberian Workshop IGCP480 (July 25 – August 6, 2005, Irkutsk – Ulan-Ude, Russia). IEC SB RAS, Irkutsk, 291 p.
22. Sklyarov E.V., Fedorovsky V.S., Kotov A.B., Lavrenchuk A.V., Mazukabzov A.M., Levitsky V.I., Sal’nikova E.B., Starikova A.E. et al., 2009. Carbonatites in Collisional Settings and Pseudo-Carbonatites of the Early Paleozoic Ol’khon Collisional System. Russian Geology and Geophysics 50 (12), 1091–1106. https://doi.org/10.1016/j.rgg.2009.11.008.
23. Sklyarov E.V., Fedorovsky V.S., Kotov A.B., Lavrenchuk A.V., Mazukabzov A.M., Starikova A.E., Yakovleva S.Z., Anisimova I.V., Fedoseenko A.M., 2013. Carbonate and Silicate-Carbonate Injection Complexes in Collision Systems: The West Baikal Region as an Example. Geotectonics 47 (3), 180–196. https://doi.org/10.1134/S0016852113020064.
24. Sklyarov E.V., Lavrenchuk A.V., Fedorovsky V.S., Pushkarev E.V., Semenova D.V., Starikova A.E., 2020. Dismembered Ophiolite of the Olkhon Composite Terrane (Baikal, Russia): Petrology and Emplacement. Minerals 10 (4), 305. https://doi.org/10.3390/min10040305.
25. Sklyarov E.V., Lavrenchuk A.V., Mazukabzov A.M., 2021. Marble Mélange: Variations of Composition and Modes of Formation. Geodynamics & Tectonophysics 12 (4), 805–825 (in Russian) [Скляров Е.В., Лавренчук А.В., Мазукабзов А.М. Мраморный меланж: вариации состава и механизмы образования // Геодинамика и тектонофизика. 2021. Т. 12. № 4. С. 805–825]. https://doi.org/10.5800/GT-2021-12-4-0556.
26. Vuorinen J.H., Skelton A.D.L., 2004. Origin of Silicate Minerals in Carbonatites from Alno Island, Sweden: Magmatic Crystallization or Wall Rock Assimilation. Terra Nova 16 (4), 210–215. https://doi.org/10.1111/j.1365-3121.2004.00557.x.
27. Wan Y., Liu D., Xu Z., Dong C., Wang Z., Zhou H., Yang Z., Liu Z., Wu J., 2008. Paleoproterozoic Crustally Derived Carbonate-Rich Magmatic Rocks from the Daqinshan Area, North China Craton: Geological, Petrographical, Geochronological and Geochemical (Hf, Nd, O and C) Evidence. American Journal of Science 308 (3), 351–378. https://doi.org/10.2475/03.2008.07.
28. Wyllie P.J., Tuttle O.F., 1960. The System CaO-CO2-H2O and the Origin of Carbonatites. Journal of Petrology 1 (1), 1–46. https://doi.org/10.1093/petrology/1.1.1.
29. Yarmolyuk V.V., Kuz’min M.I., Vorontsov A.A., 2013. West Pacific-Type Convergent Boundaries and Their Role in the Formation of the Central Asian Fold Belt. Russian Geology and Geophysics 54 (12), 1427–1441. https://doi.org/10.1016/j.rgg.2013.10.012.
Review
For citations:
Sklyarov E.V., Lavrenchuk A.V., Mazukabzov A.M. MARBLE DIKES IN THE OLKHON COMPOSITE TERRANE (WEST BAIKAL AREA). Geodynamics & Tectonophysics. 2022;13(5):0667. https://doi.org/10.5800/GT-2022-13-5-0667