Preview

Geodynamics & Tectonophysics

Advanced search

ALKALI-CONTAINING MINERALS WITHIN MELT INCLUSIONS IN OLIVINE OF MANTLE XENOLITHS FROM BULTFONTEIN KIMBERLITE PIPE (KAAPVAAL CRATON): EVIDENCE ON HIGH CONCENTRATIONS OF ALKALIS IN KIMBERLITE MELTS

https://doi.org/10.5800/GT-2022-13-4-0662

Abstract

The study reports the mineral assemblage of the crystallized secondary melt inclusions in the olivine of sheared peridotites xenoliths from Bultfontein kimberlite pipe (Kaapvaal Craton, South Africa). In this type of xenoliths, the inclusions may correspond in composition to primitive kimberlite melts related to the magmatism that formed the Bultfontein pipe. Among 32 daughter phases within the inclusions, there are both ordinary rock-forming and minor minerals for kimberlites (silicates, carbonates, oxides) and "exotic" (alkali carbonates, sulfates, and chlorides) for these rocks. In the inclusions, 20 alkali-containing minerals are present, 12 of which are Na-bearing and – 4 Na-K-bearing. For instance, the inclusions contain nyerereite, K-nyerereite, shortite, gregoryite, eitelite, bradleyite, northupite, tychite, burkeite, aphthitalite, arcanite, thenardite, sylvine, and halite. On the basis of these results, the kimberlite melt of the Bultfontein pipe had Na-specification rather than Ca or K ones. The carbonates, sulfates, and chlorides significantly prevail over silicates, which content (serpentine + micas) does not exceed 16 vol. %, in the inclusions.

The obtained results pose fundamental questions regarding the petrogenesis of kimberlites: (i) initial sodium concentrations in kimberlite melts and rocks, which are "traditionally" considered as very low; (ii) composition and ratio of volatile components in kimberlite magmas, namely, the initial contents of both CO2 and the components such as Cl, SO3 and H2O; (iii) primary magmatic mineral association of kimberlite rocks, which loses diverse alkali-containing minerals, but mica, due to serpentinization process.

About the Authors

A. A. Tarasov
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090

1 Pirogov St, Novosibirsk 630090



A. V. Golovin
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



I. S. Sharygin
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences
Russian Federation

128 Lermontov St, Irkutsk 664033



References

1. Brett R.C., Russell J.K., Andrews G.D.M., Jones T.J., 2015. The Ascent of Kimberlite: Insights from Olivine. Earth and Planetary Science Letters 424, 119–131. https://doi.org/10.1016/j.epsl.2015.05.024.

2. Giuliani A., Soltys A., Phillips D., Kamenetsky V.S., Maas R., Goemann K., Woodhead J.D., Drysdale R.N., Griffin W.L., 2017. The Final Stages of Kimberlite Petrogenesis: Petrography, Mineral Chemistry, Melt Inclusions and Sr-C-O Isotope Geochemistry of the Bultfontein Kimberlite (Kimberley, South Africa). Chemical Geology 455, 342–356. https://doi.org/10.1016/j.chemgeo.2016.10.011.

3. Golovin A.V., Sharygin I.S., Kamenetsky V.S., Korsakov A.V., Yaxley G.M., 2018. Alkali-Carbonate Melts from the Base of Cratonic Lithospheric Mantle: Links to Kimberlites. Chemical Geology 483, 261–274. https://doi.org/10.1016/j.chemgeo.2018.02.016.

4. Golovin A.V., Sharygin I.S., Korsakov A.V., Kamenetsky V.S., Abersteiner A., 2020. Can Primitive Kimberlite Melts Be Alkali‐Carbonate Liquids: Composition of the Melt Snapshots Preserved in Deepest Mantle Xenoliths. Journal of Raman Spectroscopy 51 (9), 1849–1867. https://doi.org/10.1002/jrs.5701.

5. Kamenetsky V.S., Kamenetsky M.B., Golovin A.V., Sharygin V.V., Maas R., 2012. Ultrafresh Salty Kimberlite of the Udachnaya–East Pipe (Yakutia, Russia): A Petrological Oddity or Fortuitous Discovery. Lithos 152, 173–186. https://doi.org/10.1016/j.lithos.2012.04.032.

6. Liu Z., Ionov D.A., Nimis P., Xu Y., He P., Golovin A.V., 2022. Thermal and Compositional Anomalies in a Detailed Xenolith-Based Lithospheric Mantle Profile of the Siberian Craton and the Origin of Seismic Midlithosphere Discontinuities. Geology 50 (8), 891–896. https://doi.org/10.1130/G49947.1.

7. Logvinova A., Zedgenizov D., Wirth R., 2019. Specific Multiphase Assemblages of Carbonatitic and Al-Rich Silicic Diamond-Forming Fluids/Melts: TEM Observation of Microinclusions in Cuboid Diamonds from the Placers of Northeastern Siberian Craton. Minerals 9 (1), 50. https://doi.org/10.3390/min9010050.

8. Mercier J.-C.C., 1979. Peridotite Xenoliths and the Dynamics of Kimberlite Intrusion. In: F.R. Boyd, H.O.A. Meyer (Eds), The Mantle Sample: Inclusion in Kimberlites and Other Volcanics. Vol. 16. American Geophysical Union, p. 197–212. https://doi.org/10.1029/SP016p0197.

9. Mitchell R.H., Giuliani A., O’Brien H., 2019. What is a Kimberlite? Petrology and Mineralogy of Hypabyssal Kimberlites. Elements 15 (6), 381–386. https://doi.org/10.2138/gselements.15.6.381.

10. Nickel K.G., Green D.H., 1985. Empirical Geothermobarometry for Garnet Peridotites and Implications for the Nature of the Lithosphere, Kimberlites and Diamonds. Earth and Planetary Science Letters 73 (1), 158–170. https://doi.org/10.1016/0012-821X(85)90043-3.

11. Taylor R.W., 1998. An Experimental Test of Some Geothermometer and Geobarometer Formulations for Upper Mantle Peridotites with Application to the Thermobarometry of Fertile Lherzolite and Garnet Websterite. Neues Jahrbuch für Mineralogie: Abhandlungen 172 (2–3), 381–408. https://doi.org/10.1127/njma/172/1998/381.

12. Zaitsev A.N., Keller J., Spratt J., Perova E.N., Kearsley A., 2008. Nyerereite – Pirssonite – Calcite – Shortite Relationships in Altered Natrocarbonatites, Oldoinyo Lengai, Tanzania. The Canadian Mineralogist 46 (4), 843–860. https://doi.org/10.3749/canmin.46.4.843.

13. Zedgenizov D.A., Rege S., Griffin W.L., Kagi H., Shatsky V.S., 2007. Composition of Trapped Fluids in Cuboid Fibrous Diamonds from the Udachnaya Kimberlite: LAM-ICPMS Analysis. Chemical Geology 240, 151–162. https://doi.org/10.1016/j.chemgeo.2007.02.003.


Review

For citations:


Tarasov A.A., Golovin A.V., Sharygin I.S. ALKALI-CONTAINING MINERALS WITHIN MELT INCLUSIONS IN OLIVINE OF MANTLE XENOLITHS FROM BULTFONTEIN KIMBERLITE PIPE (KAAPVAAL CRATON): EVIDENCE ON HIGH CONCENTRATIONS OF ALKALIS IN KIMBERLITE MELTS. Geodynamics & Tectonophysics. 2022;13(4):0662. (In Russ.) https://doi.org/10.5800/GT-2022-13-4-0662

Views: 1084


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)