Preview

Geodynamics & Tectonophysics

Advanced search

XENOLITH GARNETS FROM MIR KIMBERLITE PIPE: CHEMICAL COMPOSITION AND EVIDENCE OF METASOMATIC PROCESSES IN THE LITHOSPHERE MANTLE

https://doi.org/10.5800/GT-2022-13-4-0661

Abstract

This paper reports the results on the composition of lithosphere mantle under the Mirny kimberlite field. The authors investigated 57 samples of the mantle xenoliths collected from the Mir pipe. The samples were represented by peridotites (Grt lherzolites) and pyroxenites (Grt websterite, Grt clinopyroxenite and eclogite). The composition of minerals (garnet, clinopyroxene) and various rocks in the lithosphere mantle under the Mirny kimberlite field were analyzed based on petrographic features and chemical data. Besides, PT conditions of rock crystallization were calculated using different geothermobarometers. Garnets from peridotites and websterites show relatively high Mg# (75–83) and low TiO2 contents (up to 0.2 wt. %). Since the eclogite has high-Ca (3.78–9.46 wt. %) and high-Fe (7.77–17.20 wt. %) garnet composition, it lies in the area of wehrlite paragenesis. In general, garnets from the lithosphere mantle under the Mirny kimberlite field have low-Ti garnet composition (up to 0.7 wt. %). Thus, the lithosphere mantle under the Mirny kimberlite field differs from the lithosphere mantle under other diamondiferous fields in a widespread development of eclogite and pyroxenite (up to 50 %), low-Ti composition of rocks, as well as virtual absence of deformed lherzolites. These signs probably indicate minor alteration of silicate metasomatism in the lithospheric mantle under the Mirny field (in contrast to the center of the Siberian craton).

About the Authors

T. V. Kalashnikova
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Russian Federation

1а Favorsky St, Irkutsk 664033



S. I. Kostrovitsky
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Russian Federation

1а Favorsky St, Irkutsk 664033



K. A. Sinitsyn
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Russian Federation

1а Favorsky St, Irkutsk 664033



E. E. Yudintseva
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Russian Federation

1а Favorsky St, Irkutsk 664033



References

1. Ai Y., 1994. A Revision of the Garnet-Clinopyroxene Fe2+–Mg Exchange Geothermometer. Contributions to Mineralogy and Petrology 115, 467–473. https://doi.org/10.1007/BF00320979.

2. Ashchepkov I.V., Vladykin N.V., Ntaflos T., Downes H., Mitchell R., Smelov A.P., Alymova N.V., Kostrovitsky S.I., Rotman A.Ya., Smarov G.P. et al., 2013. Regularities and Mechanism of Formation of the Mantle Lithosphere Structure beneath the Siberian Craton in Comparison with Other Cratons. Gondwana Research 23 (1), 4–24. https://doi.org/10.1016/j.gr.2012.03.009.

3. Aulbach S., Jacob D.E., 2016. Major- And Trace-Elements in Cratonic Mantle Eclogites and Pyroxenites Reveal Heterogeneous Sources and Metamorphic Processing of Low-Pressure Protoliths. Lithos 262, 586–605. https://doi.org/10.1016/j.lithos.2016.07.026.

4. Beard B.L., Fraracci K.N., Taylor L.A., Snyder G.A., Clayton R.A., Mayeda T.K., Sobolev N.V., 1996. Petrography and Geochemistry of Eclogites from the Mir Kimberlite, Yakutia, Russia. Contributions to Mineralogy and Petrology 125, 293–310. https://doi.org/10.1007/s004100050223.

5. Brey G.P., Köhler T., 1990. Geothermobarometry in Four-Phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. Journal of Petrology 31 (6), 1353–1378. https://doi.org/10.1093/petrology/31.6.1353.

6. Brey G.P., Köhler T., Nickel K.G., 1990. Geothermobarometry in Four-Phase Lherzolites. I. Experimental Results from 10 to 60 Kbar. Journal of Petrology 31 (6), 1313–1352. https://doi.org/10.1093/petrology/31.6.1313.

7. Ellis D.J., Green D.H., 1979. An Experimental Study of the Effect of Ca upon Garnet-Clinopyroxene Fe-Mg Exchange Equilibria. Contributions to Mineralogy and Petrology 71, 13–22. https://doi.org/10.1007/BF00371878.

8. Griffin W.L., Ryan C.G., Kaminsky F.V., O’Reilly S.Y., Natapov L.M., Win T.T., Kinny P.D., Ilupin I.P., 1999. The Siberian Lithosphere Traverse: Mantle Terranes and the Assembly of the Siberian Craton. Tectonophysics 310 (1–4), 1–35. https://doi.org/10.1016/S0040-1951(99)00156-0.

9. Hasterok D., Chapman D.C., 2011. Heat Production and Geotherms for the Continental Lithosphere. Earth and Planetary Science Letters 307 (1–2), 59–70. https://doi.org/10.1016/j.epsl.2011.04.034.

10. Howarth G.H., Barry P.H., Pernet-Fisher J.F., Baziotis I.P., Pokhilenko N.P., Pokhilenko L.N., Bodnar R.J., Taylor L.A., Agashev A.M., 2014. Superplume Metasomatism: Evidence from Siberian Mantle Xenoliths. Lithos 184–185, 209–224. https://doi.org/10.1016/j.lithos.2013.09.006.

11. Ionov D.A., Doucet L.S., Ashchepkov I.V., 2010. Composition of the Lithospheric Mantle in the Siberian Craton: New Constraints from Fresh Peridotites in the Udachnaya-East Kimberlite. Journal of Petrology 51 (11), 2177–2210. https://doi.org/10.1093/petrology/egq053.

12. Ionov D.A., Doucet L.S., Carlson R.W., Golovin A.V., Korsakov A.V., 2015. Post Archean Formation of the Lithospheric Mantle in the Central Siberian Craton: Re-Os and PGE Study of Peridotite Xenoliths from the Udachnaya Kimberlite. Geochimica et Cosmochimica Acta 165, 466–483. https://doi.org/10.1016/j.gca.2015.06.035.

13. Krogh E.J., 1988. The Garnet-Clinopyroxene Fe-Mg Geothermometer – A Reinterpretation of Existing Experimental Data. Contributions to Mineralogy and Petrology 99, 44–48. https://doi.org/10.1007/BF00399364.

14. Krogh Ravna E., 2000. The Garnet-Clinopyroxene Fe2+–Mg Geothermometer: An Updated Calibration. Journal of Metamorphic Geology 18 (2), 211–219. https://doi.org/10.1046/j.1525-1314.2000.00247.x.

15. Mattey D., Lowry D., Macpherson C., 1994. Oxygen Isotope Composition of Mantle Peridotite. Earth Planetary Science Letters 128 (3–4), 231–241. https://doi.org/10.1016/0012-821X(94)90147-3.

16. Nickel K.G., Green D.H., 1985. Empirical Geothermobarometry for Garnet Peridotites and Implications for the Nature of the Lithosphere, Kimberlites and Diamonds. Earth and Planetary Science Letters 73 (1), 158–170. https://doi.org/10.1016/0012-821X(85)90043-3.

17. Nimis P., Grutter H., 2010. Internally Consistent Geothermometers for Garnet Peridotites and Pyroxenites. Contribution to Mineralogy and Petrology 154, 411–427. https://doi.org/10.1007/s00410-009-0455-9.

18. Nimis P., Taylor W.R., 2000. Single Clinopyroxene Thermobarometery for Garnet Peridotites. Part 1, Calibration and Testing of a Cr-in-Cpx Barometer and an Enstatite-in-Cpx Thermometer. Contributions to Mineralogy and Petrology 139, 541–554. https://doi.org/10.1007/s004100000156.

19. Pokhilenko N.P., Sobolev N.V., Kuligin S.S., Shimizu N., 1999. Peculiarities of Distribution of Pyroxenite Paragenesis Garnets in Yakutian Kimberlites and Some Aspects of the Evolution of the Siberian Craton Lithospheric Mantle. In: Proceedings of the 7th International Kimberlite Conference (April 11–17, 1998, Cape Town, South Africa). Vol. 2. Red Roof Design, Cape Town, p. 689–698.

20. Rosen O.M., 2003. The Siberian Craton: Tectonic Zonation and Stages of Evolution. Geotectonics 37 (3), 175–192.

21. Sobolev N.V., 1974. The Deep Inclusion from Kimberlites and the Problem of Upper Mantle Composition. Nauka, Novosibirsk, 263 p. (in Russian)

22. Solov’eva L.V., Lavrent’ev Y.G., Egorov K.N., Kostrovitsky S.I., Suvorova L.F., 2008. The Genetic Relationship of the Deformed Peridotites and Garnet Megacrysts from Kimberlites with Asthenospheric Melts. Russian Geology and Geophysics 49 (4), 207–224. https://doi.org/10.1016/j.rgg.2007.09.008.

23. Solov’eva L.V., Vladimirov B.M., Dneprovskaya L.V., Maslovskaya M.N., Brandt S.B., 1994. The Kimberlites and Kimberlite-Like Rocks: Material of Upper Mantle beneath Ancient Platforms. Nauka, Novosibirsk, 256 p. (in Russian)

24. Ukhanov A.V., Ryabchikov I.D., Kharkiv A.D., 1988. The Lithosphere Mantle of Yakutian Kimberlite Province. Nauka, Moscow, 298 p. (in Russian)

25. Valley J.W., Kinny P.D., Schulze D.J., Spicuzza M.J., 1998. Zircon Megacrysts from Kimberlite: Oxigen Isotope Heterogeneity among Mantle Melt. Contributions to Mineralogy and Petrology 133, 1–11. https://doi.org/10.1007/s004100050432.

26. Valley J.W., Kitchen N., Kohn M.J., Niendorf C.R., Spicuzza M.J., 1995. UWG-2, a Garnet Standard for Oxygen Isotope Ratios: Strategies for High Precision and Accuracy with Laser Heating. Geochimica et Cosmochimica Acta 59 (24), 5223–5231. https://doi.org/10.1016/0016-7037(95)00386-X.


Review

For citations:


Kalashnikova T.V., Kostrovitsky S.I., Sinitsyn K.A., Yudintseva E.E. XENOLITH GARNETS FROM MIR KIMBERLITE PIPE: CHEMICAL COMPOSITION AND EVIDENCE OF METASOMATIC PROCESSES IN THE LITHOSPHERE MANTLE. Geodynamics & Tectonophysics. 2022;13(4):0661. (In Russ.) https://doi.org/10.5800/GT-2022-13-4-0661

Views: 444


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)