XENOLITHS OF POLYMICTIC BRECCIAS FROM KIMBERLITES OF THE YAKUTIAN DIAMONDIFEROUS PROVINCE
https://doi.org/10.5800/GT-2022-13-4-0660
Abstract
The polymictic breccias, extremely rare mantle conglomerates being the fragments of rocks and large mantle minerals cemented with fine-grained mass have been long provoking interest of petrologists worldwide. This work provides a comparative analysis of two xenoliths of polymictic rocks from kimberlite pipes of different age and productivity occurring in the Siberian craton. The similarity of the chemical composition of some minerals of polymictic breccias from kimberlites within different parts of the Siberian craton assumes possible formation of these minerals caused by the same factors in the prekimberlite period of these parts of the lithospheric mantle. A wide range of compositions and chaotic zoning of minerals, the presence of exsolution textures in orthopyroxene, ilmenite, sulfide, and kelyphite rims on garnet suggest that the fragments of the studied xenoliths are unbalanced. Sample SH18/20 is the first polymictic breccia showing asthenospheric melt-fluids sampling shallow depths of the spinel facies.
About the Authors
L. N. PokhilenkoRussian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
N. P. Pokhilenko
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
1 Pirogov St, Novosibirsk 630090
V. P. Afanasiev
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
References
1. Brey G.P., Kohler T., 1990. Geothermobarometry in Four-Phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. Journal of Petrology 31 (6), 1353–1378. https://doi.org/10.1093/petrology/31.6.1353.
2. De Hoog J.C.M., Gall L., Cornell D.H., 2010. Trace-Element Geochemistry of Mantle Olivine and Application to Mantle Petrogenesis and Geothermobarometry. Chemical Geology 270 (1–4), 196–215. https://doi.org/10.1016/j.chemgeo.2009.11.017.
3. Finnerty A.A., Rigden S.M., 1981. Olivine Barometry Application to Pressure Estimation for Terrestrial and Lunar Rocks. Lunar and Planetary Science XII, 279–281.
4. Giuliani A., Phillips D., Kamenetsky V.S., Kendrick M.A., Wyatt B., Goemann K., Hutchinson G., 2014. Petrogenesis of Mantle Polymict Breccias: Insights into Mantle Processes Coeval with Kimberlite Magmatism. Journal of Petrology 55 (4), 831–858. http://doi.org/10.1093/petrology/egu008.
5. Harley S.L., 1984. An Experimental Study of the Partitioning of Fe and Mg between Garnet and Orthopyroxene. Contributions to Mineralogy and Petrology 86, 359–373. https://doi.org/10.1007/BF01187140.
6. Höfer H.E., Lazarov M., Brey G.P., Woodland A.B., 2009. Oxygen Fugacity of the Metasomatizing Melt in a Polymict Peridotite from Kimberley. Lithos 112, 1150–1154. http://doi.org/10.1016/J.LITHOS.2009.05.037.
7. Korolyuk V.N., Lavrent’ev Yu.G., Usova L.V., Nigmatulina E.N., 2008. JXA-8100 Microanalyzer: Accuracy of Analysis of Rock-Forming Minerals. Russian Geology and Geophysics 49 (3), 165–168. https://doi.org/10.1016/j.rgg.2007.07.005.
8. Lavrent’ev Yu.G., Karmanov N.S., Usova L.V., 2015. Electron Probe Microanalysis of Minerals: Microanalyzer or Scanning Electron Microscope? Russian Geology and Geophysics 56 (8), 1154–1161. https://doi.org/10.1016/j.rgg.2015.07.006.
9. Lawless P.J., Gurney J.J., Dawson J.B., 1979. Polymict Peridotites from the Bultfontein and de Beers Mines, Kimberley, South Africa. In: F.R. Boyd, H.O.A. Meyer (Eds), The Mantle Sample: Inclusion in Kimberlites and Other Volcanics. Vol. 16. AGU Special Publication, p. 145–155. https://doi.org/10.1029/SP016p0145.
10. McGregor I.D., 1974. The System MgO-SiO2-Al2O3: Solubility of Al2O3 in Enstatite for Spinel and Garnet Peridotite Compositions. American Mineralogist 59, 110–119.
11. Nimis P., Taylor W., 2000. Single Clinopyroxene Thermobarometry for Garnet Peridotites. Part I. Calibration and Testing of a Cr-in-Cpx Barometer and an Enstatite-in-Cpx Thermometer. Contributions to Mineralogy and Petrology 139, 541–554. https://doi.org/10.1007/s004100000156.
12. Pokhilenko L.N., 2006. Features of Fluid Regime in the Lithosphere Mantle of the Siberian Platform (after Xenolyths of Deep-Seated Rocks in Kimberlites). PhD Thesis (Candidate of Geology and Mineralogy). Novosibirsk, 129 p. (in Russian)
13. Pokhilenko L.N., 2018. Exotic Olivine-Mica Rocks from the Udachnaya-East Pipe (Yakutia): Features of the Chemical Composition and Origin. Doklady Earth Sciences 481 (2), 1050–1055. http://doi.org/10.1134/S1028334X18080202.
14. Pokhilenko N.P., 2009. Polymict Breccia Xenoliths: Evidence for the Complex Character of Kimberlite Formation. Lithos 112, 934–941. http://doi.org/10.1016/J.LITHOS.2009.06.019.
15. Zhang H.F., Menzies M.A., Gurney J.J., Zhou X., 2001а. Cratonic Peridotites and Silica-Rich Melts: Diopside-Enstatite Relationships in Polymict Xenoliths, Kaapvaal, South Africa. Geochimica et Cosmochimica Acta 65 (19), 3365–3377. http://doi.org/10.1016/S0016-7037(01)00675-5.
16. Zhang H.F., Menzies M.A., Mattey D., 2003. Mixed Mantle Provenance: Diverse Garnet Compositions in Polymict Peridotites, Kaapvaal Craton, South Africa. Earth and Planetary Science Letters 216 (3), 329–346. http://doi.org/10.1016/S0012-821X(03)00487-4.
17. Zhang H.F., Menzies M.A., Mattey D.P., Hinton R.W., Gurney J.J., 2001b. Petrology, Mineralogy and Geochemistry of Oxide Minerals in Polymict Xenoliths from the Bultfontein Kimberlites, South Africa: Implication for Low Bulk-Rock Oxygen Isotopic Ratios. Contributions to Mineralogy and Petrology 141, 367–379. http://doi.org/10.1007/S004100100254.
Review
For citations:
Pokhilenko L.N., Pokhilenko N.P., Afanasiev V.P. XENOLITHS OF POLYMICTIC BRECCIAS FROM KIMBERLITES OF THE YAKUTIAN DIAMONDIFEROUS PROVINCE. Geodynamics & Tectonophysics. 2022;13(4):0660. (In Russ.) https://doi.org/10.5800/GT-2022-13-4-0660