ОСОБЕННОСТИ ДЕФОРМАЦИИ КОНТИНЕНТАЛЬНОЙ И ОКЕАНИЧЕСКОЙ ЛИТОСФЕРЫ КАК СЛЕДСТВИЕ СЕВЕРНОГО ДРЕЙФА ЯДРА ЗЕМЛИ
https://doi.org/10.5800/GT-2012-3-1-0060
Аннотация
На фоне разнообразных направлений горизонтального перемещения, сочетающегося с деформациями горизонтального растяжения, сжатия и сдвига литосферы (рис. 1), обнаружено явление дрейфа и субмеридионального сжатия континентальной и океанической литосферы, вектор которых направлен на север (рис. 7–14). Среди различных структурных форм и их парагенезов – индикаторов такого сжатия – ведущую роль играют надвиги северной вергентности (рис. 15–17, 19, 22–24). Этот процесс не был непрерывным, но проявлял себя во времени дискретно, накладываясь на процессы коллизионного орогенеза и платформенных деформаций континентальной литосферы и аккреции океанической коры в зонах спрединга. Выявлены три основных этапа субмеридионального сжатия океанической литосферы: позднеюрский – позднемеловой, позднемиоценовый и современный.
Посредством представления о компенсационной организации тектонического течения в теле Земли предложена модель меридиональной конвекции (рис. 25) как составного элемента надглобальной конвективной геодинамической системы наиболее крупномасштабного ранга, включающей также западную компоненту дрейфа литосферы (рис. 6) и «скручивание» Земли. На фоне этой системы функционируют геодинамические системы более мелкомасштабных рангов (таблица; рис. 2, 3), ответственные за периодическое созидание и распад суперконтинентов, тектонику литосферных плит и региональные геодинамические процессы и создающие «структурный шум», наличие которого затрудняет обнаружение структур субмеридионального сжатия, упомянутых выше. Верхний горизонтальный поток меридиональной конвекции как раз и является причиной формирования этих структур.
Меридиональная конвекция – следствие установленного независимыми методами дрейфа ядра Земли к Северному полюсу и сопротивления мантии этому дрейфу (рис. 26, 27).
Сопоставление формул, описывающих модель северного дрейфа литосферы и модель дрейфа ядра к Северному полюсу, позволило перебросить количественный «мост» между структурами меридионального сжатия литосферы и дрейфом ядра.
Следствия из модели северного дрейфа литосферы согласуются со многими независимыми данными и концепциями. Это нарушение изостатического равновесия литосферы Антарктиды и ее высокое стояние; аномально широкий шельф Арктического океана (рис. 28, а) и повышенная мощность богатого углеводородами осадочного чехла в сочетании с ультранизкой скоростью спрединга в срединно-океаническом хребте Гаккеля; примерное равенство площадей антиподально расположенных Антарктиды и Арктического океана (рис. 28, б); удлинение (по данным GPS) параллелей в Южном полушарии и их укорочение в Северном полушарии (рис. 26); радиальные по отношению к Южному полюсу рифты и другие линеаменты в Антарктиде (рис. 29, 30); субконцентрическая (по отношению к тому же полюсу) система спрединга вокруг Антарктиды, переходящая к северу в субмеридиональную систему в виде трех «стволов» примерно через 90° (рис. 31).
Повышенная скорость северного дрейфа литосферы в полосе со средним меридианом 100° в.д. – 80° з.д., в которой сосредоточена основная масса континентальной литосферы и два «полюса» которой обозначены осями Африканского и Тихоокеанского суперплюмов (рис. 3–5, 32), обусловила следующие особенности: максимальное удлинение Антарктического континента в Южном («растянутом») полушарии (рис. 28, б); максимальное укорочение Арктического океана в Северном («сжатом») полушарии (рис. 28, а); максимальную скорость спрединга в Юго-Восточном Индийском срединном хребте (рис. 33); максимальную северную компоненту скорости горизонтальных перемещений (по данным GPS, рис. 34); максимально широкий и глубокий (до 400 км) мантийный диапир – Зондский; максимально высокий ороген – Гималаи; максимально широкое и высокое плато – Тибет; максимально длинный и глубокий рифт − Байкальский. Вблизи этой меридиональной полосы находится Индостанский индентор (рис. 20). На его фронте находятся Гималаи, Тибет и более удаленный Байкал, в его тылу − зона внутриплитных деформаций субмеридионального сжатия. К этой же полосе приурочен и п-ов Таймыр (рис. 28, а), в направлении которого и дрейфует земное ядро.
Об авторах
Михаил Адрианович ГончаровРоссия
д.г.-м.н., зав. лаб. тектонофизики и геотектоники им. В.В. Белоусова,
119991, ГСП-1, Москва, Ленинские горы
Юрий Николаевич Разницин
Россия
д.г.-м.н., в.н.с.,
109017, Москва, Пыжевский пер., д. 7
Юрий Владимирович Баркин
Россия
д.ф.-м.н., профессор, в.н.с.,
119992, Москва, Университетский пр-т, д. 13
Список литературы
1. Adushkin V.V., An V.A., Ovchinnikov V.M. Issledovanie geodinamicheskih processov sejsmicheskimi metodami [The study of geodynamic processes with application of seismic methods] // Tektonika i geofizika litosfery. M.: GEOS, 2002. T. I. S. 13–17 (in Russian).
2. Agar S.M. Microstructural evolution of a deformation zone in the upper ocean crust: evidence from DSDP hole 504B // Journal of Geodynamics. 1991. V. 13, № 2–4. P. 119–140. doi.org/10.1016/0264-3707(91)90035-D.
3. Anokhin V.M., Odessky I.A. Characteristics of the global pattern of planetary fracturing // Geotectonics. 2001. V. 35, № 5. P. 335–340.
4. Barkin Yu.V. Ob’yasnenie endogennoj aktivnosti planet i sputnikov i ee ciklichnosti [The explanation of endogenic activity of planets and planetary satellites and its cyclicity] // Izvestiya sektsii nauk o Zemle RAEN. 2002. Vyp. 9. M.: VINITI. S. 45–97 (in Russian).
5. Barkin Yu.V. Nebesnaya mehanika yadra i mantii Zemli: geodinamicheskie i geofizicheskie sledstviya [The gravitational astronomy of the Earth’s core and mantle: geodynamic and geophysical consequences] // Tektonika zemnoj kory i mantii. Tektonicheskie zakonomernosti razmescheniya poleznyh iskopaemyh: Materialy XXXIII Tektonicheskogo soveschaniya. M.: GEOS, 2005. T. 1. S. 30–33 (in Russian).
6. Barkin Yu.V. Vekovoj polyarnyj drejf yadra v sovremennuyu epohu: geodinamicheskie i geofizicheskie sledstviya i podtverzhdeniya [The centenary polar drift of the core in the recent epoch: geodynamic and geophysical consequences and evidences] // Obschie i regional’nye problemy tektoniki i geodinamiki: Materialy XLI Tektonicheskogo soveschaniya. M.: GEOS, 2008. T. 1. S. 55–59 (in Russian).
7. Barkin Yu.V. Ob’yasnenie vekovyh variacij sily tyazhesti na stanciyah N’yu Jork Olesunn, Medisin, Cherchill i Sajova [The explanation of centenary variations of gravity at New York-Alesund, Medicine, Churchill and Sayova Stations] // Materialy Mezhdunarodnoj Konferencii: «Pyatye nauchnye chteniya Yu.P. Bulashevicha. Glubinnoe stroenie. Geodinamika. Teplovoe pole Zemli. Interpretaciya geofizicheskih polej». Ekaterinburg, 2009. S. 27–31 (in Russian).
8. Barkin Yu.V., Shatina A.V. Deformations of the Earth’s mantle due to core displacements // Astronomical & Astrophysical Transactions. 2005. V. 24. Issue 3. P. 195–213. doi:10.1080/10556790500496339.
9. Barkin Yu.V., Shuanggen J. On variations of the mean radius of the Northern and Southern Hemispheres of the Earth. EGU General Assembly (Vienna, Austria, 15–20 April 2007) // Geophysical Research Abstracts. V. 9. 2007. Abstract EGU07-A-08183.
10. Belousov V.V. Osnovy geotektoniki [Fundamentals of Geotectonics]. 2-e izd. M.: Nedra, 1989. 382 s. (in Russian).
11. Bergman E.A., Solomon S.C. Earthquake source mechanisms from body wave inversion and intraplate tectonics in the Northern Indian ocean // Physics of the Earth and Planetary Interiors. 1985. V. 40. P. 1–23. doi:10.1016/0031-9201(85)90002-0.
12. Bobryakov A.P., Revuzhenko A.F., Shemyakin E.I. Tidal deformation of planets: experience in tentative modelling // Geotectonics. 1992. V. 25, № 6. P. 473–482.
13. Bogdanov N.A. Tectonics of the Arctic ocean // Geotectonics. 2004. V. 38, № 3. P. 166–181.
14. Bozhko N.A.Geodynamic reversals in the polar system of Northern and Southern hemispheres of the Earth // Moscow University Geology Bulletin. 1992. V. 47, № 5. P. 24–33.
15. Bozhko N.A., Goncharov M.A. Global balanced arrangement of the geodynamic polarity of Earth’s Southern and Northern hemispheres // L.P. Zonenshain Confer. on Plate Tectonics. Kiel (Germany): GEOMAR, 1993. P. 43–44.
16. Chamot-Rooke N., Jestin F., de Voogd B., and Phedre Working Group // Intraplate shortening in the central Indian ocean determinated from a 2100 km-long north-south deep seismic reflection profile // Geology. 1993. V. 21. P. 502–516. doi:10.1130/0091-7613(1993)021<1043:ISITCI>2.3.CO;2.
17. Golynsky A.V., Golynsky D.A. Riftovye sistemy v tektonicheskoj strukture Vostochnoj Antarktidy [Rift system in the tectonic structure of East Antarctica] // Nauchnye rezul’taty geologo geofizicheskih issledovanij v Antarktike. Vyp. 2. SPb.: FGUP «VNIIOkeangeologiya im. I.S. Gramberga», 2009. S. 132–162 (in Russian).
18. Goncharov M.A. Balanced arrangement of tectonic flow and structural parageneses // Geotectonics. 1994. V. 27, № 4. P. 282–292.
19. Goncharov M.A. Quantitative correlation between geodynamic systems and geodynamic cycles of various ranks // Geotectonics. 2006. V. 40, № 2. P. 83–100. doi:10.1134/S0016852106020014.
20. Goncharov M.A. Kinematicheskaya model’ severnoj komponenty drejfa kontinentov kak prichiny rasshireniya Yuzhnogo i sokrascheniya Severnogo polushariev Zemli [The kinematic model of the northern component of continental drift as a cause of expansion of the Southern Hemisphere of the Earth and compression of the Northern Hemisphere of the Earth] // Rotacionnye processy v geologii i fizike. M.: KomKniga, 2007. S. 279–286 (in Russian).
21. Goncharov M.A. Plate tectonics as a component of geodynamics of hierarchically subordinate geospheres // Horizons in Earth Science Research. V. 5. New York: Nova Science Publishers, 2011a. P. 133–176. Available from https://www.novapublishers.com/catalog/product_info.php?products_id=31679 (last accessed April 3, 2012).
22. Goncharov M.A. Kolichestvennaya svyaz’ nablyudaemogo izmeneniya dliny zemnyh parallelej s severnym drejfom yadra Zemli i severnoj komponentoj drejfa kontinentov [The quantitative relationship of the observed changes in lengths of the Earth’s parallels and the northward drift of the Earth’s core and the northern component of continental drift] // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2011b. № 4 (2). S. 418–420 (in Russian).
23. Goncharov M.A., Raznitsin Yu.N., Barkin Yu.V. Osobennosti deformacii kontinental’noj i okeanskoj litosfery kak svidetel’stvo severnogo drejfa yadra Zemli [Specific features of deformation of the continental and oceanic lithosphere as evidences of the northward drift of the Earth’s core] // Sovremennoe sostoyanie nauk o Zemle. (Materialy mezhdunarodnoj konferencii, posvyaschennoj pamyati Viktora Efimovicha Khaina, g. Moskva, 1–4 fevralya 2011 g.)
24. M.: Izd-vo Geologicheskogo fakul’teta MGU imeni M.V. Lomonosova, 2011 (CD-ROM). S. 461–466 (in Russian).
25. Goncharov M.A., Talitsky V.G., Frolova N.S. Vvedenie v tektonofiziku [Introduction to Tectonophysics]. M.: Knizhnyj dom «Universitet», 2005. 496 s. (in Russian).
26. Goncharov M.A., Vodovozov V.Yu. Some features of twisting of the Earth in geological history: the tectonophysical aspect // Moscow University Geology Bulletin. 2010. V. 65, № 6. P. 406–409. doi:10.3103/S0145875210060086.
27. Grushinsky A.N., Stroev P.A., Koryakin E.D. Stroenie litosfery Antarktiki i ee izostaticheskoe sostoyanie [The structure of the lithosphere of the Antarctic and its isostatic state] // Otechestvennaya geologiya. 2004. № 2. S. 30–36 (in Russian).
28. Journal of the Geological Society of Japan. 1994. V. 100, № 1.
29. Kashintsev G.L. Glubinnye porody okeanov [Deep rocks of oceans]. M.: Nauka, 1991. 279 s. (in Russian).
30. Kent G.M., Swift S.A., Detrick R.S. et al. Evidence for active normal faulting on 5.9 Ma crust near Hole 504B on the southern flank of the Costa Rica rift // Geology. 1996. V. 24, № 1. P. 83–86. doi:10.1130/0091-7613(1996)024<0083:EFANFO>2.3.CO;2.
31. Khain V.E. Large-scale cyclicity in the Earth’s tectonic history and its possible origin // Geotectonics. 2000. V. 34, № 6. P. 431–441.
32. Khain V.E. Tektonika kontinentov i okeanov (god 2000) [Tectonics of continents and oceans (Year 2000)]. M.: Nauchnyj mir, 2001. 606 s. (in Russian).
33. Khain V.E., Filatova N.I., Polyakova I.D. Tektonika, geodinamika i perspektivy neftegazonosnosti Vostochno-Arkticheskih morej i ih kontinental’nogo obramleniya [Tectonics, Geodynamics and Petroleum Potential of the Eastern Arctic Seas and their Continental Borders]. M.: Nauka, 2009. 227 s. (Tr. GIN RAN. Vyp. 601.) (in Russian).
34. Khain V.E., Goncharov M.A. Geodynamic cycles and geodynamic systems of various ranks: their relationships and evolution in the Earth’s history // Geotectonics. 2006. V. 40, № 5. P. 327–344. doi:10.1134/S0016852106050013.
35. Khain V.E., Lomize M.G. Geotektonika s osnovami geodinamiki [Geotectonics with the Fundamentals of Geodynamics]. 2-e izd. M.: Knizhnyj dom «Universitet», 2005. 560 s. (in Russian).
36. Kheraskova T.N., Bush V.A., Didenko A.N., Samygin S.G. Breakup of Rodinia and early stages of evolution of the Paleoasian ocean // Geotectonics. 2010. V. 44, № 1. P. 3–24. doi:10.1134/S0016852110010024.
37. King-Hele D. The shape of the Earth // Scientific American. 1967. V. 217, № 4. P. 67–68.
38. Kley J., Voigt T. Late Cretaceous intraplate thrusting in central Europe: Effect of Africa Iberia-Europe convergence, not Alpine collision // Geology. 2008. V. 36, № 11. P. 839–842. doi:10.1130/G24930A.1.
39. Knipper A.L., Raznitsin Yu.N. Synchronism in compression of the lithosphere in the Central Atlantic and Western Tethys at the Tortonian–Messinian transition // Geotectonics. 2008. V. 40, № 2. P. 83–100. doi:10.1134/S0016852108010032.
40. Kopp M.L. Mobilisticheskaya neotektonika platform Yugo Vostochnoj Evropy [Mobilistic neotectonics of platforms in South-Eastern Europe]. M.: Nauka, 2005. 340 s. (Tr. GIN RAN, vyp. 552.) (in Russian).
41. Koronovsky N.V., Gogonenkov G.N., Goncharov M.A., Timurziev A.I., Frolova N.S. Role of shear along horizontal plane in the formation of helicoidal structures // Geotectonics. 2009. V. 43, № 5. P. 379–391. doi:10.1134/S0016852109050033.
42. Korsakov O.D., Pilipenko A.I. Compression structures in the Pacific between the Clarion and Clipperton fracture zones // Doklady of the Academy of Sciences of the USSR. Earth Science Sections. 1989. Т. 309, № 6. P. 77–79.
43. Korsakov O.D., Pilipenko A.I. Tektonicheskie deformacii Vostochno-Indijskogo hrebta [Tectonic deformation of the East Indian ridge] // Doklady AN SSSR. 1991. T. 320, № 2. S. 407–411 (in Russian).
44. Kovalenko V.I., Yarmolyuk V.V., Bogatikov O.A. The contemporary North Pangea supercontinent and the geodynamic causes of its formation // Geotectonics. 2010. V. 44, № 6. P. 448–461. doi:10.1134/S0016852110060026.
45. Kropotkin P.N., Efremov V.N. Geoid i deformacii v tektonosfere [Geoid and deformation in tectonosphere] // Geodinamika i razvitie tektonosfery. M.: Nauka, 1991. S. 85–92 (in Russian).
46. Langseth M.G., Mottle M.J., Hobart M., Fisher A. The distribution of geothermal and geochemical gradients near site 501/504: Implications for hydrothermal circulation in the oceanic crust // Proceedings of the Ocean Drilling Program. Initial Reports. Part A. V. 111. Ocean Drilling Program, College Station. Texas, USA, 1988. P. 23–32.
47. Leonov Yu.G. Kontinental’nyj riftogenez: sovremennye predstavleniya, problemy i resheniya [Continental rifting: modern ideas, problems and solutions] // Fundamental’nye problemy obschej tektoniki. M.: Nauchnyj mir, 2001. S. 155−173 (in Russian).
48. Mazarovich A.O. Geologicheskoe stroenie Central’noj Atlantiki: razlomy, vulkanicheskie sooruzheniya i deformacii okeanskogo dna [Geology of the Central Atlantic: Fractures, Volcanic Edifices and Oceanic Bottom Deformations]. M.: Nauchnyj mir. 2000. 176 s. (in Russian).
49. Minshull T.F., White R.S., Mutter J.C. et al. Crustal structure at the Blake Spur fracture zone from Expanding Spread profiles // Journal of Geophysical Research. 1991. V. 96, № B6. P. 9955–9984.
50. Moos D., Zoback M.D. Utilization of observations of well bore failure to constrain the orientation and magnitude of crustal stresses: application to continental, Deep Sea Drilling Project, and Ocean Drilling Program boreholes // Journal of Geophysical Research. 1990. V. 95, № 6. P. 9305–9325. doi:10.1029/JB095iB06p09305.
51. Pavoni M., Müller M.V. Geotectonic bipolarity, evidence from the pattern of active oceanic ridges bordering the Pacific and African plates // Journal of Geodynamics. 2000. V. 30, № 5. P. 593–601. doi:10.1016/S0264-3707(00)00006-5.
52. Popkov V.I. Skladchato-nadvigovye dislokacii (Zakaspij, Predkavkaz’e, Azovsko Chernomorski region) [Fold-thrust dislocations (Transcaspian, Pre-Caucasian, and Azov-Black Sea Regions)]. M.: Nauchnyj mir, 2001. 136 s. (in Russian).
53. Pushcharovskii Yu.M. Seismic tomography and the mantle structure: tectonic aspects // Doklady Earth Science. 1996. V. 351A, № 9. P. 1424–1427.
54. Pushcharovsky Yu.M. New Ideas in Tectonics // Geotectonics. 1997. V. 31, № 4. P. 313–318.
55. Pushcharovsky Yu.M. Seismic tomography, tectonics, and deep geodynamics // Doklady Earth Science. 1998. V. 360, № 4. P. 514–517.
56. Pushcharovskii Yu.M. Deep-sea basins of the Atlantic ocean: The structure, time and mechanisms of their formation // Russian Journal of Earth Sciences. 2004. V. 6, № 2. P. 133–152.
57. Pushcharovsky Yu.M. Tectonic structure and geodynamics of the divide between the Atlantic and Arctic oceans // Geotectonics. 2010. V. 44, № 3. P. 228–236. doi:10.1134/S0016852110030027.
58. Ramberg H. Gravity, deformation and the Earth’s crust. London: Academic Press, 1981. 452 p.
59. Raznitsin Yu.N. Structure and geodynamics of the Vema fracture-zone transverse ridge, Central Atlantic // Geotectonics. 2001. V. 35, № 3. P. 217–223.
60. Raznitsin Yu.N. Tektonicheskaya rassloennost’ litosfery molodyh okeanov i paleobassejnov [Tectonic layering of the lithosphere of young oceans and paleobasins]. M.: Nauka, 2004. 270 s. (in Russian).
61. Raznitsin Yu.N. Tectonic delamination of the Pacific lithosphere // Geotectonics. 2006. V. 40, № 2. P. 111–119. doi:10.1134/S0016852106020038.
62. Raznitsin Yu.N., Barkin Yu.V. Submeridional’noe szhatie okeanskoj litosfery kak rezul’tat severnogo drejfa yadra Zemli [Submeridional compression of the oceanic lithosphere as a result of the northward drift of the Earth’s core] // Tektonika i geodinamika skladchatyh oblastej fanerozoya: Materialy LIII Tektonicheskogo soveschaniya. M.: GEOS. 2010. T. 2. S. 186–190 (in Russian).
63. Reston T.J., Ranero C.R., Belykh I. The structure of Cretaceous oceanic crust of the NW Pacific: Constraints on processes at fast spreading centers // Journal of Geophysical Research. 1999. № B1. P. 629–644. doi:10.1029/98JB02640.
64. Sandwell D.T., Smith W.H.F. Marine gravity anomaly from Geosat and ERS-1 Sattellite Altimetry // Journal of Geophysical Research. 1997. V. 102, № B5. P. 10039–10054. doi:10.1029/96JB03223.
65. Scotese C.R., Golonka J. PALEOMAP Paleogeographic Atlas, PALEOMAP Progress Record No. 20. Department of Geology, University of Texas at Arlington. 1993. 28 maps.
66. Seidler E., Jacoby W.R., Cavsak H. Hotspot distribution, gravity, mantle tomography: evidence for plumes // Journal of Geodynamics. 1999. V. 27, № 4–5. P. 585–608. doi:10.1016/S0264-3707(98)00020-9.
67. Shemenda A. I. Modeling of intraplate deformations in the north-eastern part of the Indian ocean // Geotectonics. 1989. V. 23, № 3. P. 223–231.
68. Singh D.D. Strain deformation in the northern Indian ocean // Marine Geology. 1988. V. 79, №1–2. P. 105–118. doi:10.1016/0025-3227(88)90159-4.
69. Smith A.D., Lewis Ch. Differential rotation of lithosphere and mantle and the driving forces of plate tectonics // Journal of Geodynamics. 1999. V. 28, № 2–3. P. 97–116. doi:10.1016/S0264-3707(98)00027-1.
70. Sokolov S.Yu. Anomal’nye mehanizmy ochagov zemletryasenij Atlantiki i ih geodinamicheskaya interpretaciya [Anomalous earthquake focal mechanisms of the Atlantic, and their geodynamic interpretation] // Materialy XYIII Mezhdunarodnoj nauchnoj konferencii (Shkoly) po morskoj geologii. M.: GEOS, 2009. T. 5. S. 153–155 (in Russian).
71. Sokolov S.Yu., Sokolov N.S., Dmitriev L.V. Geodynamic zonation of the Atlantic ocean lithosphere: Application of cluster analysis procedure and zoning inferred from geophysical data // Russian Journal of Sciences. 2008. V. 10. P. 1–30. doi:10.2205/2007ES000218. (http://elpub.wdcb.ru/journals/rjes) .
72. Stein C.A., Cloetingh S., Wortal R. Seasat-derived gravity constraints on stress and deformation in the northeastern Indian ocean // Journal of Geophysical Research. 1989. V. 16, № 8. P. 823–876.
73. Tectonic map of the World. 1:45000000 / Eds. Yu.G. Leonov, V.E. Khain. St. Petersburg: Mingeo USSR, VSEGEI, 1982.
74. Timurziev A.I. Kinematika i zakonomernosti orientirovki razryvnyh narushenij i osej napryazhenij v osadochnyh bassejnah Severnogo polushariya [The kinematics and regularities of faulting and orientation of stress axes in sedimentary basins of the Northern Hemisphere] // Otechestvennaya geologiya. 2009. № 6. S. 52–59 (in Russian).
75. Trifonov V.G., Pevnev A.K. Sovremennye dvizheniya zemnoj kory po dannym kosmicheskoj geodezii [The modern movements of the Earth’s crust according to satellite geodetic data] // Fundamental’nye problemy obschej tektoniki. M.: Nauchnyj mir, 2001. S. 374–401 (in Russian).
76. Trubitsyn V.P., Rykov V.V. Mantijnaya konvekciya s plavayuschimi kontinentami [The mantle convection with floating continents] // Problemy global’noj geodinamiki. M.: GEOS, 2000. S. 7–28 (in Russian).
77. Utkin V.P., Hanchuk A.I., Mihailik E.V., Hershberg L.B. Strukturno-dinamicheskie usloviya formirovaniya gajotov Magellanovyh gor (Tihij okean) [Structural and dynamic conditions of formation of guyots in the Magellanic mountains (Pacific)] // Tihookeanskaya geologiya. 2006. T. 25, № 2. S. 3–14 (in Russian).
78. Verzhbicky E.V., Sokolov S.D., Frantzen E.M., Tuchkova M.I., Bannikov G.A. Tektonicheskaya struktura, osadochnye bassejny i perspektivy neftegazonosnosti shel’fa Chukotskogo morya (Rossiiskaya Arktika) [The tectonic structure, sedimentary basins and petroleum potential of the Chukotskoe sea shelf (Russian Arctic)] // Gazovaya promyshlennost’. Specvypusk 654/2010. C. 32–37 (in Russian).
79. White R.S., Detric R.S., Mutter J.C. New seismic images of oceanic crustal structure // Geology. 1990. V. 18. № 5. P. 462–465. doi:10.1130/00917613(1990)018<0462:NSIOOC>2.3.CO;2.
80. Yoshida M., Santosh M. Future supercontinent in the northern hemisphere // Terra Nova. 2011. V. 23, № 5. P. 333–338. doi:10.1111/j.1365-3121.2011.01018.x.
81. Zaitsev A.V. Diz`yunktivnaya tektonika i novejshee napryazhennoe sostoyanie geoprostranstva Kol’skoj sverhglubokoj skvazhiny [Disjunctive tectonics and the most recent state of stresses in the kol’skaya super-deep well’s geospace]: Avtoref. dis. … kand. geol.-min. nauk. M.: MGU, 2009. 22 s. (in Russian).
82. Zoback M.L. First- and second-order patterns of stress in the lithosphere: the World stress map project // Journal of Geophysical Research. 1992. V. 97. P. 11703–11728. doi:10.1029/92JB00132.
83. Zonenshain L.P., Kuz’min M.I. Paleogeodinamika [Paleogeodynamics]. M.: Nauka, 1993. 192 s. (in Russian).
84. Zonenshain L.P., Savostin L.A. Vvedenie v geodinamiku [Introduction to Geodynamics]. M.: Nedra, 1979. 311 s. (in Russian).
85. Zuber M.T. Compression of oceanic lithosphere: an analysis of intraplate deformation in the Central Indian basin // Journal of Geophysical Research. 1987. V. 92, № B6. P. 4817–4825.
Рецензия
Для цитирования:
Гончаров М.А., Разницин Ю.Н., Баркин Ю.В. ОСОБЕННОСТИ ДЕФОРМАЦИИ КОНТИНЕНТАЛЬНОЙ И ОКЕАНИЧЕСКОЙ ЛИТОСФЕРЫ КАК СЛЕДСТВИЕ СЕВЕРНОГО ДРЕЙФА ЯДРА ЗЕМЛИ. Геодинамика и тектонофизика. 2012;3(1):27-54. https://doi.org/10.5800/GT-2012-3-1-0060
For citation:
Goncharov M.A., Raznitsin Yu.N., Barkin Yu.V. SPECIFIC FEATURES OF DEFORMATION OF THE CONTINENTAL AND OCEANIC LITHOSPHERE AS A RESULT OF THE EARTH CORE NORTHERN DRIFT. Geodynamics & Tectonophysics. 2012;3(1):27-54. (In Russ.) https://doi.org/10.5800/GT-2012-3-1-0060