TECTONIC SETTINGS OF FORMATION OF VOLCANIC AND SEDIMENTARY ROCKS OF THE ITMURUNDY ZONE, CENTRAL KAZAKHSTAN
https://doi.org/10.5800/GT-2022-13-1-0572
Abstract
The paper presents new petrographic and geochemical data from volcanic and sedimentary rocks and first U-Pb ages of detrital zircons from sandstones of the Itmurundy zone of central Kazakhstan. The volcanic rocks are aphyric and porphyric basalts, andesibasalt and andesite. The major element composition of tuff and sandstone are close to that of andesite. The poorly sorted greenish grey sandstones carry numerous fragments of volcanic and sedimentary rocks suggesting its greywacke nature which is probably due to. The greywacke probably formed by the destruction of undissected arc. The distribution of U-Pb ages of detrital zircons spanning 505 to 432 Ma has unimodal character peaked at 445 Ma suggesting formation of the sandstones by the destruction and subsequent transportation of clastic material from a late Ordovician intra-oceanic arc. In geochemical diagrams, the tuffs and sandstone plot close to the volcanic rocks. All chondrite-normalized REE spectra show enrichment in LREE (LaN=38–367, La/YbN=4.0–16.9, La/SmN=2.1–3.3) and moderate to weakly differentiated HREE (Gd/YbN=1.4–4.0). However, the level of REE concentrations in the volcanic rocks, in particular, in basalts, is significantly higher than that in the sandstone and andesite. The primitive mantle normalized trace-element diagrams show peaks at Nb (Nb/Lapm=0.9–1.6, Nb/Thpm=0.8–1.6) in most basaltoids, but troughs at Nb for andesite, tuff and sandstone (Nb/Lapm=0.25–0.31, Nb/Thpm=0.17). The previous and new geochronological, petrographic and geochemical data show that the volcanic and sedimentary rocks of the Itmurundy zone formed in Ordovician time in an intra-plate oceanic setting and in a supra-subduction setting at a Pacific-type convergent margin.
Keywords
About the Authors
A. A. PerfilovaRussian Federation
Alina A. Perfilova
1 Pirogov St, Novosibirsk 630090
3 Academician Koptyug Ave, Novosibirsk 630090
I. Yu. Safonova
Russian Federation
1 Pirogov St, Novosibirsk 630090
3 Academician Koptyug Ave, Novosibirsk 630090
P. D. Kotler
Russian Federation
1 Pirogov St, Novosibirsk 630090
3 Academician Koptyug Ave, Novosibirsk 630090
I. A. Savinskiy
Russian Federation
1 Pirogov St, Novosibirsk 630090
A. V. Gurova
Russian Federation
1 Pirogov St, Novosibirsk 630090
3 Academician Koptyug Ave, Novosibirsk 630090
References
1. Alexeiev D.V., Ryazantsev A.V., Kröner A., Tretyakov A.A., Xia X., Liu D.Y., 2011. Geochemical Data and Zircon Ages for Rocks in a High-Pressure Belt of Chu-Yili Mountains, Southern Kazakhstan: Implications for the Earliest Stages of Accretion in Kazakhstan and the Tianshan. Journal of Asian Earth Sciences 42 (5), 805–820. https://doi.org/10.1016/j.jseaes.2010.09.004.
2. Biske Yu.S., 1991. Island Arcs in the Paleozoic History of the Southern Tien Shan Region. Geotectonics 25 (2), 127–131 (in Russian)
3. Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J.N., Valley J.W., Mundil R., Campbell I.H. et al., 2004. Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace-Element-Related Matrix Effect; SHRIMP, ID-TIMS, ELA-ICP-MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chemical Geology 205 (1–2), 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003.
4. Clift P.D., Vannucchi P., 2004. Controls on Tectonic Accretion versus Erosion in Subduction Zones: Implications for the Origin and Recycling of the Continental Crust. Reviews of Geophysics 42 (2), RG2001. https://doi.org/10.1029/2003RG000127.
5. Coleman R.G., 1977. Ophiolites. Ancient Oceanic Lithosphere? Springer, Berlin, Heidelberg, 229 p. https://doi.org/10.1007/978-3-642-66673-5.
6. Degtyarev K.E., 1999. Tectonic Evolution of the Early Paleozoic Active Margin in Kazakhstan. Vol. 513. Nauka, Moscow, 123 p. (in Russian)
7. Degtyarev K.E., Luchitskaya M.V., Tretyakov A.A., Pilitsyna A.V., Yakubchuk A.S., 2021. Early Paleozoic Suprasubduction Complexes of the North Balkhash Ophiolite Zone (Central Kazakhstan): Geochronology, Geochemistry and Implications for Tectonic Evolution of the Junggar-Balkhash Ocean. Lithos 380–381, 105818. https://doi.org/10.1016/j.lithos.2020.105818.
8. Degtyarev K.E., Yakubchuk A.S., Luchitskaya M.V., Tretyakov A.A., 2020. Age and Structure of a Fragment of the Early Cambrian Ophiolite Sequence (North Balkhash Zone, Central Kazakhstan). Doklady Earth Sciences 491, 111–116. https://doi.org/10.1134/S1028334X20030034.
9. Dickinson W.R., Beard L.S., Brakenridge G.R., Erjavek J.L., Ferguson R.C., Inman K.F., Knepp R.A., Lindberg F.A., Ryberg P.T., 1983. Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting. Geological Society of America Bulletin 94 (2), 222–235. https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2.
10. Dobretsov N.L., Berzin N.A., Buslov M.M., 1995. Opening and Tectonic Evolution of the Paleo-Asian Ocean. International Geology Review 37 (4), 335–360. https://doi.org/10.1080/00206819509465407.
11. Geological Map of the USSR, 1960. Series Balkhash. Scale 1:200000. Sheet L-43-XI. South Kazakhstan Geological Department of the Mingeo USSR (in Russian)
12. Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y., 2008. GLITTER: Data Reduction Software for Laser Ablation ICPMS. In: P.J. Sylvester (Ed.), Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series. Vol. 40. Vancouver, p. 308–311.
13. Irvine T.N., Baragar W.R.A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences 8 (5), 523–547. https://doi.org/10.1139/e71-055.
14. Isozaki Y., Aoki K., Nakama T., Yanai S., 2010. New Insight into a Subduction-Related Orogen: A Reappraisal of the Geotectonic Framework and Evolution of the Japanese Islands. Gondwana Research 18 (1), 82–105. https://doi.org/10.1016/j.gr.2010.02.015.
15. Isozaki Y., Maruyama S., Fukuoka F., 1990. Accreted Oceanic Materials in Japan. Tectonophysics 181 (1–4), 179–205. https://doi.org/10.1016/0040-1951(90)90016-2.
16. Jensen L.S., 1976. A New Cation Plot for Classifying Subalkalic Volcanic Rocks. Ontario Division Mines Miscellaneous, 22 p.
17. Jochum K.P., Nohl U., 2008. Reference Materials in Geochemistry and Environmental Research and the Georem Database. Chemical Geology 253, 50–53. https://doi.org/10.1016/j.chemgeo.2008.04.002.
18. Khanchuk A.I., Nikitina A.P., Panchenko I.V., Burii G.I., Kemkin I.V., 1989. Paleozoic and Mesozoic Guyots of Sikhote-Alin and Sakhalin. Doklady of the USSR Academy of Sciences 307 (1), 186-190 (in Russian)
19. Khubanov V.B., Buyantuev M.D., Tsygankov A.A., 2016. U–Pb Dating of Zircons from PZ3–MZ Igneous Complexes of Transbaikalia by Sector-Field Mass Spectrometry with Laser Sampling: Technique and Comparison with SHRIMP. Russian Geology and Geophysics 57 (1), 190–205. https://doi.org/10.1016/j.rgg.2016.01.013.
20. Kurenkov S.A., Didenko A.N., Simonov V.A., 2002. Geodynamics of Paleospreding. GEOS, Moscow, 294 p. (in Russian)
21. Kusky T., Windley B., Safonova I., Wakita K., Wakabayashi J., Polat A., Santosh M., 2013. Recognition of Ocean Plate Stratigraphy in Accretionary Orogens through Earth History: A Record of 3.8 Billion Years of Sea Floor Spreading, Subduction, and Accretion. Gondwana Research 24 (2), 501–547. https://doi.org/10.1016/j.gr.2013.01.004.
22. Le Maitre R.W. (Ed.), 2002. Igneous Rocks: A Classification and Glossary of Terms. Cambridge University Press, Cambridge, 251 p.
23. Long X., Yuan C., Sun M., Safonova I., Xiao W., Wang Y., 2012. Geochemistry and U-Pb Detrital Zircon Dating of Paleozoic Graywackes in East Junggar, NW China: Insights into Subduction–Accretion Processes in the Southern Central Asian Orogenic Belt. Gondwana Research 21, (2–3) 637–653. https://doi.org/10.1016/j.gr.2011.05.015.
24. Ludwig K.R., 2012. ISOPLOT 3.75. A Geochronological Toolkit for Microsoft Excel. User’s Manual. Berkeley Geochronology Center Special Publication 5, 75 p.
25. Macdonald G.A., 1968. Composition and Origin of Hawaiian Lavas. In: R.R. Coats, R.L. Hay, C.A. Anderson (Eds), Studies in Volcanology. Geological Society of America Memoir 116, 477–522. https://doi.org/10.1130/MEM116-p477.
26. Maruyama S., 1997. Pacific-Type Orogeny Revisited: Miyashiro-Type Orogeny Proposed. Island Arc 6 (1), 91–120. https://doi.org/10.1111/j.1440-1738.1997.tb00042.x.
27. Maruyama S., Omori S., Sensu H., Kawai K., Windley B.F., 2011. Pacific-Type Orogens: New Concepts and Variations in Space and Time from Present to Past. Journal of Geography 120 (1), 115–223. https://doi.org/10.5026/jgeography.120.115.
28. Miyashiro A., 1973. The Troodos Ophiolitic Complex Was Probably Formed in an Island Arc. Earth and Planetary Science Letters 19 (2), 218–224. https://doi.org/10.1016/0012-821X(73)90118-0.
29. Miyashiro A., 1975. Volcanic Rock Series and Tectonic Setting. Annual Review of Earth and Planetary Sciences 3, 251–269. https://doi.org/10.1146/annurev.ea.03.050175.001343.
30. Mullen E.D., 1983. MnO/TiO2/P2O5: A Minor Element Discriminant for Basaltic Rocks of Oceanic Environments and Its Implications for Petrogenesis. Earth and Planetary Science Letters 62 (1), 53–62. https://doi.org/10.1016/0012-821X(83)90070-5.
31. Nikitin I.F., 2002. Ordovician Siliceous and Siliceous-Basalt Complexes of Kazakhstan. Russian Geology and Geophysics 43, 512–527 (in Russian)
32. Novikova M.Z., Gerasimova N.A., Dubinina S.V., 1983. Conodonts from the Volcanic-Siliceous Complex of the Northern Balkhash. Doklady of the USSR Academy of Sciences 271, 1449–1451 (in Russian)
33. Orihashi Y., Hirata T., 2003. Rapid Quantitative Analysis of Y and REE Abundances in XRF Glass Bead for Selected GSJ Reference Rock Standards Using Nd-YAG 266 nm UV Laser Ablation ICP-MS. Geochemical Journal 37 (3), 401–412. https://doi.org/10.2343/geochemj.37.401.
34. Patalakha E.I., Belyi V.A., 1981. Ophiolites of the Itmurundy-Kazyk. In: A.A. Abdulin, E.I. Patalakha (Eds), Ophiolites of Kazakhstan. Nauka, Alma-Ata, p. 7–102 (in Russian)
35. Pearce J.A., Peate D.W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Reviews in Earth and Planetary Sciences 23, 251–285. https://doi.org/10.1146/annurev.ea.23.050195.001343.
36. Pettijohn F.J., Potter P.E., Siever R., 1987. Sand and Sandstone. Springer, New York, 553 p. https://doi.org/10.1007/978-1-4612-1066-5.
37. Regelous M., Hofmann A.W., Abouchami W., Galer S.J.G., 2003. Geochemistry of Lavas from the Emperor Seamounts, and the Geochemical Evolution of Hawaiian Magmatism from 85 to 42 Ma. Journal of Petrology 44 (1), 113–140. https://doi.org/10.1093/petrology/44.1.113.
38. Safonova I., 2009. Intraplate Magmatism and Oceanic Plate Stratigraphy of the Paleo-Asian and Paleo-Pacific Oceans from 600 to 140 Ma. Ore Geology Reviews 35 (2), 137–154. https://doi.org/10.1016/j.oregeorev.2008.09.002.
39. Safonova I., Kojima S., Nakae S., Romer R., Seltmann R., Sano H., Onoue T., 2015. Oceanic Island Basalts in Accretionary Complexes of SW Japan: Tectonic and Petrogenetic Implications. Journal of Asian Earth Sciences 113 (1), 508–523. https://doi.org/10.1016/j.jseaes.2014.09.015.
40. Safonova I., Maruyama S., Kojima S., Komiya T., Krivonogov S., Koshida K., 2016. Recognizing OIB and MORB in Accretionary Complexes: A New Approach Based on Ocean Plate Stratigraphy, Petrology, and Geochemistry. Gondwana Research 33, 92–114. https://doi.org/10.1016/j.gr.2015.06.013.
41. Safonova I.Yu, Perfilova A.A., Obut O.T., Savinsky I.A., Cherny R.I., Petrenko N.A., Gurova A.V., Kotler P.D. et al., 2019. Itmurundy Accretionary Complex (Northern Balkhash): Geological Structure, Stratigraphy and Tectonic Origin. Russian Journal of Pacific Geology 13, 283–296. https://doi.org/10.1134/S1819714019030072.
42. Safonova I., Santosh M., 2014. Accretionary Complexes in the Asia-Pacific Region: Tracing Archives of Ocean Plate Stratigraphy and Tracking Mantle Plumes. Gondwana Research 25 (1), 126–158. https://doi.org/10.1016/j.gr.2012.10.008.
43. Safonova I.Yu., Savinsky I.A., Perfilova A.A., Gurova A.V., Maruyama S., Tsujimori T., 2020. Itmurundy Accretionary Complex (Northern Balkhash): Geological Structure, Stratigraphy and Tectonic Origin. Gondwana Research 79, 49–69. https://doi.org/10.1016/j.gr.2019.09.004.
44. Sano H., Kanmera K., 1988. Paleogeographic Reconstruction of Accreted Oceanic Rocks, Akiyoshi, Southwest Japan. Geology 16 (7), 600–602. https://doi.org/10.1130/0091-7613(1988)016<0600:PROAOR>2.3.CO;2.
45. Sano H., Kojima S., 2000. Carboniferous to Jurassic Oceanic Rocks of Mino-Tamba-Ashio Terrane, Southwest Japan. The Memoirs of the Geological Society of Japan 55, 123–144.
46. Scholl D.W., von Huene R., 2007. Crustal Recycling at Modern Subduction Zones Applied to the Past – Issues of Growth and Preservation of Continental Basement Crust, Mantle Geochemistry, and Supercontinent Reconstruction. Geological Society of America Memoirs 200, 9–32. https://doi.org/10.1130/2007.1200(02).
47. Shutov V.D., 1967. Classification of Sandstones. Lithology and Mineral Resources 5, 86–103 (in Russian)
48. Slama J., Kosler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A. et al., 2008. Plešovice Zircon – a New Natural Reference Material for U–Pb and Hf Isotopic Microanalysis. Chemical Geology 249 (1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.
49. Stepanets V.G., 2015. Geology and Geodynamics of Central Kazakhstan Ophiolites. Karaganda State Technical University Publishing House, Karaganda, 362 p. (in Russian)
50. Stern R.J., Scholl D.W., 2010. Yin and Yang of Continental Crust Creation and Destruction by Plate Tectonic Processes. International Geology Review 52 (1), 1–31. https://doi.org/10.1080/00206810903332322.
51. Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: A.D. Saunders, M.J. Norry (Eds), Magmatism in the Ocean Basins. Geological Society of London Special Publications 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.
52. Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 379 p.
53. Wakita K., 2012. Mappable Features of Mélanges Derived from Ocean Plate Stratigraphy in the Jurassic Accretionary Complexes of Mino and Chichibu Terranes, Southwest Japan. Tectonophysics 568–569, 74–85. https://doi.org/10.1016/j.tecto.2011.10.019.
54. Wakita K., Metcalfe I., 2005. Ocean Plate Stratigraphy in East and Southeast Asia. Journal of Asian Earth Sciences 24 (60), 670–702. https://doi.org/10.1016/j.jseaes.2004.04.004.
55. Winchester J.A., Floyd P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology 20, 325–343. https://doi.org/10.1016/0009-2541(77)90057-2.
56. Windley B.F., Alexeiev D., Xiao W., Kröner A., Badarch G., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society of London 164 (1), 31–47. http://dx.doi.org/10.1144/0016-76492006-022.
57. Woodhead J., Eggins S., Gamble J., 1993. High Field Strength and Transition Element Systematics in Island Arc and Back-Arc Basin Basalts: Evidence for Multi-Phase Melt Extraction and a Depleted Mantle Wedge. Earth and Planetary Science Letters 114 (4), 491–504. https://doi.org/10.1016/0012-821X(93)90078-N.
58. Xiao W.J., Huang B., Han C., Sun S., Li. J., 2010. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Research 18 (2–3), 253–273. https://doi.org/10.1016/j.gr.2010.01.007.
59. Yan Q., Castillo P., Shi X., Wang L., Liao L., Ren J., 2015. Geochemistry and Petrogenesis of Volcanic Rocks from the Continent-Ocean Transition Zone in Northern South China Sea and Their Tectonic Implications. Lithos 218–219, 117–126. https://doi.org/10.1016/j.lithos.2014.12.023.
60. Yarmolyuk V.V., Kovach V.P., Kozakov I.K., Kozlovsky A.M., Kotov A.B., Rytsk E.Y., 2012. Mechanisms of Continental Crust Formation in the Central Asian Foldbelt. Geotectonics 46, 251–272. https://doi.org/10.1134/S001685211204005X.
61. Zhylkaidarov A.M., 1998. Conodonts form Ordovician of Central Kazakhstan. Acta Paleontologica Polonica 43 (1), 53–68.
62. Zonenshain L.P., Kuzmin M.I., Natapov L.M., 1990. Geology of the USSR: A Plate Tectonic Synthesis. Geodynamic Monograph Series. American Geophysical Union, 242 p.
Review
For citations:
Perfilova A.A., Safonova I.Yu., Kotler P.D., Savinskiy I.A., Gurova A.V. TECTONIC SETTINGS OF FORMATION OF VOLCANIC AND SEDIMENTARY ROCKS OF THE ITMURUNDY ZONE, CENTRAL KAZAKHSTAN. Geodynamics & Tectonophysics. 2022;13(1):0572. (In Russ.) https://doi.org/10.5800/GT-2022-13-1-0572