GEOLOGICAL AND GEOPHYSICAL TRANSECT OF THE MIDDLE TIEN SHAN ACROSS THE NARYN AND ATBASHI DEPRESSIONS
https://doi.org/10.5800/GT-2022-13-1-0568
Abstract
The article presents the results of integrated geological and geophysical research works dealt with detailed magnetotelluric (MT) sounding and the study of the morphology and spatial position of the sedimentary cover and basement structures along the key transect of the Middle Tien Shan crossing the Naryn and Atbashi depressions. The data on the distribution of deep electrical conductivity of the crust and upper mantle were compared with the seismic profiling data. The compilation of the results of structural-geological and geophysical studies provided the opportunity to draw 2D upper-crust geological structure, consistent with the structure of electrical conductivity of the crust to depths of about 10 km. The detailed geological cross-sections and the structural and geological data allow us to characterize the deformations of the Cenozoic sedimentary complex and Paleozoic basement surface associated with the alpine activation of the key segment of the Tien Shan. It is shown that the Cenozoic structural parageneses emerged during a relatively short-term phase of deformation and orogeny under conditions of horizontal compression and transpression, which did not manifest themselves during sagging that occurred previously.
Keywords
About the Authors
E. S. PrzhiyalgovskiiRussian Federation
Eugeny S. Przhiyalgovskii
7 Pyzhevsky Ln, Moscow 119017
A. K. Rybin
Kyrgyzstan
Bishkek 720049
Yu. A. Morozov
Russian Federation
10-1 Bolshaya Gruzinskaya St, Moscow 123242
E. V. Lavrushina
Russian Federation
7 Pyzhevsky Ln, Moscow 119017
M. G. Leonov
Russian Federation
7 Pyzhevsky Ln, Moscow 119017
E. A. Bataleva
Kyrgyzstan
Bishkek 720049
References
1. Abdrakhmatov K.E., Weldon R., Thompson S., Burbank D., Rubin Ch., Miller M., Molnar P., 2001. Origin, Direction, and Speed of the Modern Compression of Central Tien Shan (Kyrgyzstan). Russian Geology and Geophysics 42 (10), 1585–1609 (in Russian)
2. Bazhenov M.L., Mikolaichuk A.V., 2004. Structural Evolution of Central Asia to the North of Tibet: A Synthesis of Paleomagnetic and Geological Data. Geotectonics 38 (5), 379–393.
3. Berdichevsky M.N., Dmitriev V.I., 2009. Models and Methods of Magnetotellurics. Nauchny Mir, Moscow, 679 p. (in Russian)
4. Brandes C., Tanner D.C., 2014. Fault-Related Folding: A Review of Kinematic Models and Their Application. Earth-Science Reviews 138, 352–370. https://doi.org/10.1016/j.earscirev.2014.06.008.
5. Bullen M.E., Burbank D.W., Garver J.I., 2003. Building the Northern Tien Shan: Integrated Thermal, Structural, and Topographic Constraints. The Journal of Geology 111 (2), 149–165. https://doi.org/10.1086/345840.
6. Burbank D.W., McLean J.K., Bullen M., Abdrakhmatov K.Y., Miller M.M., 1999. Partitioning of Intermontane Basins by Thrust-Related Folding, Tien Shan, Kyrgyzstan. Basin Research 11 (1), 75–92. https://doi.org/10.1046/j.1365-2117.1999.00086.x.
7. Burtman V.S., 2010. Tien Shan, Pamir, and Tibet: History and Geodynamics of Phanerozoic Oceanic Basins. Geotectonics 44, 388–404. https://doi.org/10.1134/S001685211005002X.
8. Burtman V.S., 2012. Tien Shan and High Asia: Geodynamics in the Cenozoic. GEOS, Moscow, 186 p. (in Russian)
9. Buslov M.M., 2004. Cenozoic Tectonics of Central Asia: Basement Control. Himalayan Journal of Sciences 2 (4), 104–105.
10. Buslov M.M., De Grave J., Bataleva E.A., Batalev V.Yu., 2007. Cenozoic Tectonic and Geodynamic Evolution of the Kyrgyz Tien Shan Mountains: A Review of Geological, Thermochronological and Geophysical Data. Journal of Asian Earth Sciences 29 (2–3), 205–214. https://doi.org/10.1016/j.jseaes.2006.07.001.
11. Buslov M.M., Kokh D.A., De Grave J., 2008. Mesozoic-Cenozoic Tectonics and Geodynamics of Altai, Tien Shan, and Northern Kazakhstan, from Apatite Fission-Track Data. Russian Geology and Geophysics 49 (9), 648–654. https://doi.org/10.1016/j.rgg.2008.01.006.
12. Chediya O.K., 1986. Morphostructures and Neotectonics in the Tien Shan. Ilim, Frunze, 313 p. (in Russian)
13. Delvaux D., Cloetingh S., Beekman F., Sokoutis D., Burov E., Buslov M.M., Abdrakhmatov K.E., 2013. Basin Evolution in a Folding Lithosphere: Altai-Sayan and Tien Shan Belts in Central Asia. Tectonophysics 602, 194–222. https://doi.org/10.1016/j.tecto.2013.01.010.
14. Dewey F.J., Hempton M. R., Kidd W.S.F., Saroglu F., Şengör A.M.C., 1986. Shortening of Continental Lithosphere: The Neotectonics of Eastern Anatolia – A Young Collision Zone. In: M.P. Coward, A.C. Ries (Eds), Collision Tectonics. Collision Tectonics. Geological Society of London Special Publication 19, 1–36. https://doi.org/10.1144/GSL.SP.1986.019.01.01.
15. Geological Map of the Kyrgyz SSR, 1980. Scale 1:500000. Publishing House of the USSR Ministry of Geology, Leningrad, (in Russian)
16. Geology of the USSR, 1972. Vol. XXV. Kirghiz SSR. Geological Description. Book 1. Nedra, Moscow, 280 p. (in Russian)
17. Glorie S., De Grave J., Buslov M.M., Zhimulev F.I., Stockli D.F., Batalev V.Y., Elburg M.A., 2011. Tectonic History of the Kyrgyz South Tien Shan (Atbashi-Inylchek) Suture Zone: The Role of Inherited Structures during Deformation-Propagation. Tectonics 30 (6), TC6016. https://doi.org/10.1029/2011TC002949.
18. Goode J.K., Burbank D.W., Bookhagen B., 2011. Basin Width Control of Faulting in the Naryn Basin, South-Central Kyrgyzstan. Tectonics 30 (6), TC6009. https://doi.org/10.1029/2011TC002910.
19. Goode J.K., Burbank D.W., Ormukov C., 2014. Pliocene-Pleistocene Initiation, Style, and Sequencing of Deformation in the Central Tien Shan. Tectonics 33 (4), 464–484. https://doi.org/10.1002/2013TC003394.
20. Leonov M.G., Przhiyalgovskii E.S., Lavrushina E.V., Morozov Y.A., Rybin A.K., Bakeev R.A., Stefanov Y.P., 2020. Tectonic Evolution of the Basement–Sedimentary Cover System and Morhpostructural Differentiation of Sedimentary Basins. Geotectonics 54 (2), 147–172. https://doi.org/10.1134/S0016852120020089.
21. Leonov M.G., Przhiyalgovskii E.S., Lavrushina E.V., Rybin A.K., 2016. Postmagmatiс Tectonics of Granites and Morphostructure of the Northern Tien Shan. Lithosphere 6, 5–32 (in Russian)
22. Makarov V.I., 1977. Modern Tectonic Structure of the Central Tien Shan. Nauka, Moscow, 171 p. (in Russian)
23. Makarov V.I., Alekseev D.V., Leonov M.G., Batalev V.Y., Bataleva E.A., Bragin V.D., Rybin A.K., Shchelochkov G.G. et al., 2010. Underthrusting of Tarim beneath the Tien Shan and Deep Structure of Their Junction Zone: Main Results of Seismic Experiment along Manas Profile Kashgar-Song-Köl. Geotectonics 44, 102–126. https://doi.org/10.1134/S0016852110020020.
24. Makeev V.P., 2000. Oil and Gas Potential of the Kokshaal, Issyk-Kul, Chu and Talas Depressions in the Paleozoic and Mesozoic-Cenozoic. Vol. 3. Funds of the State Geological Agency of the Kyrgyz Republic, Frunze, 26 p. (in Russian)
25. Molnar P., Tapponnier P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science 189 (4201), 419–426.
26. Morozov Y.A., 2002. Structure Formation Function of Transpression and Transtension. Geotectonics 36 (6), 3–28.
27. Morozov Y.A., Leonov M.G., Alekseev D.V., 2014. Pull-Apart Formation Mechanism of Cenozoic Basins in the Tien Shan and Their Transpressional Evolution: Structural and Experimental Evidence. Geotectonics 48 (1), 24–53. https://doi.org/10.1134/S0016852114010051.
28. Mossakovsky A.A., Ruzhentsev S.V., Samygin S.G., Kheraskova T.N., 1993. Central Asian Fold Belt: Geodynamic Evolution and Formation History. Geotectonics 6, 3–33 (in Russian)
29. Omuraliev M., 1990. Cenozoic Geology and the Latest Tectonics of the Alabuga-Naryn Basin of the Tien Shan. Brief PhD Thesis (Candidate of Geology and Mineralogy). Frunze, 19 p. (in Russian)
30. Porshnyakov G.S., 1973. Hercynides of Altai and Adjacent Areas of the Southern Tien Shan. Publishing House of Leningrad State University, Leningrad, 216 p. (in Russian)
31. Przhiyalgovskii E.S., Lavrushina E.V., 2017. Fold Deformations of the Paleozoic Basement Roof in the Chunkurchak Trough, Kyrgyz Ala-Too Range. Geotectonics 51, 366–382. https://doi.org/10.1134/S0016852117030098.
32. Przhiyalgovskii E.S., Lavrushina E.V., 2020. Tectonic Evolution of the Naryn-Atbashi Intra-Mountain Basin of the Tien Shan: Reflection of the Stages of Development of the Central Uplift in Morphostructure and Sedimentation. In: Fundamental Problems of Tectonics and Geodynamics. Materials of the LII Tectonic Meeting (January 28 – February 01, 2020). Vol. 2. GEOS, Moscow, p. 176–181 (in Russian)
33. Przhiyalgovskii E.S., Lavrushina E.V., Batalev V.Yu., Bataleva E.A., Leonov M.G., Rybin A.K., 2018. Structure of the Basement Surface and Sediments in the Kochkor Basin (Tien Shan): Geological and Geophysical Evidence. Russian Geology and Geophysics 59 (4), 335–350. https://doi.org/10.1016/j.rgg.2017.09.003.
34. Przhiyalgovskii E.S., Morozov Yu.A., Leonov M.G., Rybin A.K., Lavrushina E.V., Bataleva E.A., 2020. Tectonic Structure and Development of the "Depression/Uplift" Transition Zones, Northern Tien Shan. Vestnik of Saint Petersburg University. Earth Sciences 65 (4), 760–781 (in Russian) https://doi.org/10.21638/spbu07.2020.409.
35. Rodi W.L., Mackie R.L., 2001. Nonlinear Conjugate Gradients Algorithm for 2-D Magnetotelluric Inversion. Geophysics 66 (1), 174–187. https://doi.org/10.1190/1.1444893.
36. Rybin A.K., Bataleva E.A., Batalev V.Y., Matyukov V.E., Zabinyakova O.B., Nelin V.O., Morozov Y.A., Leonov M.G., 2018. Specific Features in the Deep Structure of the Naryn Basin–Baibichetoo Ridge–Atbashi Basin System: Evidence from the Complex of Geological and Geophysical Data. Doklady Earth Sciences 479, 499–502. https://doi.org/10.1134/S1028334X18040165.
37. Rybin A.K., Spichak V.V., Batalev V.Yu., Bataleva E.A., Matyukov V.E., 2008. Array Magnetotelluric Soundings in the Active Seismic Area of Northern Tien Shan. Russian Geology and Geophysics 49 (5), 337–349. https://doi.org/10.1016/j.rgg.2007.09.014.
38. Sadybakasov I.S., 1990. Neotectonics of High Asia. Nauka, Moscow, 179 p. (in Russian)
39. Sobel E.R., Oskin M., Burbank D., Mikolaichuk A., 2006. Exhumation of Basement-Cored Uplifts: Example of the Kyrgyz Range Quantified with Apatite Fission Track Thermochronology. Tectonics 25 (2). https://doi.org/10.1029/2005TC001809.
40. Suppe J., Medwedeff D.A., 1990. Geometry and Kinematics of Fault-Propagation Folding. Eclogae Geologicae Helvetiae 83 (3), 409–454.
41. Thompson S.C., Weldon R.J., Rubin C.M., Abdrakhmatov K., Molnar P., Berger G.W., 2002. Late Quaternary Slip Rates across the Central Tien Shan, Kyrgyzstan, Central Asia. Journal of Geophysical Research: Solid Earth 107 (В9), 1–32. https://doi.org/10.1029/2001JB000596.
42. Trofimov A.K., 1973. Basic Stages of the Development of the Relief of the Mountains of Central Asia. In: O.K. Chedia (Ed.), Regularities of the Geological Development of the Tien Shan in the Cenozoic. Ilim, Frunze, 98–115 (in Russian)
43. Yudakhin F.N., 1983. Geophysical Fields, Deep Structure and Seismicity of the Tien Shan. Ilim, Frunze, 246 p. (in Russian)
Review
For citations:
Przhiyalgovskii E.S., Rybin A.K., Morozov Yu.A., Lavrushina E.V., Leonov M.G., Bataleva E.A. GEOLOGICAL AND GEOPHYSICAL TRANSECT OF THE MIDDLE TIEN SHAN ACROSS THE NARYN AND ATBASHI DEPRESSIONS. Geodynamics & Tectonophysics. 2022;13(1):0568. (In Russ.) https://doi.org/10.5800/GT-2022-13-1-0568