SEISMODYNAMICS AND DEEP INTERNAL ORIGIN OF THE NORTH CHINA ZONE OF STRONG EARTHQUAKES
https://doi.org/10.5800/GT-2011-2-4-0049
Abstract
Space-and-time regularities of seismicity of the North China (Tan-Lu) zone are studies, and tectonic nature of strong earthquakes is analyzed. The concept of its genesis is still a matter of debate as this zone is located in the centre of the ancient SinoKorean craton, i.e. thousand kilometers away from convergent margins of Eurasia and the Pacific оcean and IndoAustralian plates (Figure 1). The information on the regional cycling dynamics [Xu, Deng, 1996] is updated. Two cycles, in which strong earthquakes (14 shocks with М≥7.0) occurred in the region under study, are distinguished, i.e. from 1500 to 1700, and from 1800 to 1980 (Figure 2). The seismodynamics of the North China zone is consistent with the Circum Pacific оcean deformation wave that occurs once in 300 years at the margin between Asia and the ocean and thus causes the strongest earthquakes (М≥8.8) and eruptions of volcanoes in the Pacific оcean belt [Vikulin et al., 2009, 2010]. This wave came to the northern regions of China in the years of 1500 and 1800 (Figure 3) and triggered seismic activity cycles.
The second factor predetermining the seismicity of the Northern China is a specific structure of the region which can manifest seismic activity due to the impact of deformation waves. The genesis of the metastable structure of the region is related to tectonic restructuring of the lithosphere of the SinoKorean craton due to shear displacements in the Tan-Lu megazone. Regional variations of compositions of mantle xenoliths of the Sikhote Alin orogeny demonstrate that the latent strike of the Tan-Lu faults can be traced across the south-eastern areas of Russia to the Tatar Strait. These faults are borders of the Vshaped mantle block (400 x 1500 km) (Figure 5), which composition is characterized by an anomalous content of iron and a low depletion of peridotites. The tectonic mantle block maintains its activity; being impacted by compression from the west, it is squeezed out towards the Sakhalin Island and simultaneously subject to the clockwise rotation. As a result, along and above the margins of the covered lithospheric block in the southern Far East of Russia, main seismic zones have formed (Figure 5, B), wherein earthquakes of M≥5.0 are recorded. The anomalous mantle block at the base of the Sikhote Alin used to be a part of the SinoKorean craton; it was cut out in the JurassicCretaceous period and moved in the northeastern direction along the Tan-Lu shear fault. The lithosphere of the craton was significantly extended during closure of the remaining area, and an evident consequence of extension was formation of two Cenozoic rifting systems. In the Paleogene, the Hebei rift system occurred westward of the Tan-Lu megazone; it hosted earthquakes of the latest seismic cycle. The Shanxi rift system strikes in the northeastward direction and separates the western block of the craton (called Ordos) from the western block (called Hebei); it hosted earthquakes of the earlier seismic cycle.
Recent geodynamics.
During restructuring of the lithosphere, rotations of tectonic blocks were of importance, along with the lithospheric extension. The specific features of the craton structure suggest two tectonophysical mechanisms of rotation. Firstly, when the triangleshaped zone westward of Tan-Lu was being closed, the lithospheric segment rotated clockwise (Figure 5, С). Consequently, at the mobile front, a compression zone was formed; it has two maximums located NE and SW of the rotation centre. This structural pattern is typical of the lithosphere of the central part of the craton. Within the limits of two conjugated maximums westward of Tan-Lu, the crustal thickness is reduced, and the depth to the asthenosphere is sharply decreased (Figures 4, B and 4, C). The rotation of the blocks in the lithosphere resulted in formation of the gigantic anticline fold, where at the eastern area of rifting is located. Secondly, the clockwise rotation of the Hebei tectonic block triggered the counter clock rotation of the Ordos block that is located west of Hebei (Figure 6, A). At the border of the two blocks rotating in the opposite directions, grabens of the Sshaped Shanxi rift system were formed. The rotation of the tectonic blocks is evidenced by changes of strikes of ancient dykes of the craton (Figure 6, B). Regularities of migration of earthquakes in the North China zone reflect specific features of the tectonic structure of the craton (see Figure 4, А). The earthquakes of the latest cycle were caused by increasing compression of the lithospheric fold. The seismic events of the earlier cycle were associated with the rotation of the Hebei and Ordos blocks. The tectonic mechanism, that were triggered during restructuring of the lithosphere in the early Cretaceous – early Cenozoic, are still actively controlling seismicity in the North China zone.
About the Author
Andrey A. StepashkoRussian Federation
Candidate of Geology and Mineralogy, Lead Researcher,
680000, Khabarovsk, Kim Yu Chen street, 65
References
1. Ван М., Го Я., Цинь Ф. Сейсмичность Северного Китая и ее связь с движениями по крупным разломам // Глубинное строение Тихоокеанского обрамления: Материалы международного симпозиума. Ч. II. Под ред. В.Г. Моисеенко, И.А. Загрузиной. Благовещенск: АмурКНИИ, 1990. C. 60–73.
2. Викулин А.В., Акманова Д.Р., Осипова Н.А. Вулканизм как индикатор геодинамических процессов // Литосфера. 2010. № 3. С. 5–11.
3. Викулин А.В., Акманова Д.Р., Осипова Н.А. Ротационноупругие волны: сейсмический, вулканический и тектонический процессы // Тектоника и глубинное строение востока Азии: VI Косыгинские чтения / Под ред. А.Н. Диденко, А.А. Степашко. Хабаровск: ИТиГ им. Ю.А. Косыгина ДВО РАН, 2009. С. 260–263.
4. Викулин А.В., Быков В.Г., Лунева М.Н. Нелинейные волны деформаций в ротационной модели сейсмического процесса // Вычислительные технологии. 2000. Т. 5. № 1. С. 31–39.
5. Зоненшайн Л.П., Кузьмин М.И., Натапов Л.М. Тектоника литосферных плит территории СССР. М.: Недра, 1990. Кн. 2. 334 с.
6. Каплун В.Б. Результаты магнитотеллурических зондирований в пределах западной части Сихотэ-Алиньской складчатой системы // Тихоокеанская геология. 1994. Т. 13. № 5. C. 141–153.
7. Каплун В.Б. Предварительные результаты глубинных магнитотеллурических зондирований по профилю п. Облучье – оз. Гасси (Хабаровский край) // Тихоокеанская геология. 1998. Т. 17. № 2. C. 122–135.
8. Копп М.Л. Структуры латерального выжимания в АльпийскоГималайском коллизионном поясе. М.: Научный мир, 1997. 314 с. (Тр. ГИН; вып. 506).
9. Маламуд А.С., Николаевский В.Н. Цикличность сейсмотектонических событий на краях Индийской литосферной плиты // Доклады АН СССР. 1985. Т. 282. № 6. C. 1333–1337.
10. Степашко А.А. Особенности петрохимического состава ксенолитовых ассоциаций лерцолитов щелочных базальтов // Геология и геофизика. 1988. №. 12. С. 95–100.
11. Степашко А.А. Химическая структура ультраосновной мантии. Владивосток: Дальнаука, 1998. 128 с.
12. Степашко А.А. Латеральная гетерогенность мантии Дальнего Востока // Тихоокеанская геология. 2001. Т. 20. № 5. С. 93–117.
13. Уломов В.И. Волны сейсмогеодинамической активизации и долгосрочный прогноз землетрясений // Физика Земли. 1993. № 4. С. 43–53.
14. Bykov V.G. Strain waves in the earth: Theory, field data, and models // Geologiya i Geofizika (Russian geology and geophysics). 2005. V. 46. № 11. P. 1176–1190.
15. Fan W.M., Zhang H.F., Baker J., Jarvis K.E., Mason P.R.D., Menzies M.A. On and off the North China сraton: where is the Archaean keel? // Journal of Petrology. 2000. V. 41. № 7. P. 933–950. doi:10.1093/petrology/41.7.933.
16. Feng M., Van der Lee S., An M., Zhao Y. Lithospheric thickness, thinning, subduction, and interaction with the asthenosphere beneath China from the joint inversion of seismic Swave train fits and Rayleighwave dispersion curves // Lithos. 2010. V. 120. № 1–2. P. 116–130. doi:10.1016/j.lithos.2009.11.017.
17. Fridman A.M. Klimenko A.V. The Relationship between the Earth’s Seismic Activity and Latitude as a Function of Earthquake Hypocenter Depth // Izvestiya, Physics of the Solid Earth. 2002. V. 38. № 12. P. 1039–1043.
18. Gatinsky Yu.G., Rundquist D.V. Geodynamics of Eurasia: Plate Tectonics and Block Tectonics // Geotectonics. 2004. V. 38. № 1. P. 1–16.
19. Grimmer J.C., Jockheere R., Enkelmann E., Ratschbacher L., Hacker B.R. et al. Cretaceous – Cenozoic history of the southern Tan-Lu fault zone: apatite fissiontrack and structural constraints from the Dabie Shan (Eastern China) // Tectonophysics. 2002. V. 359. № 3–4. P. 225–253. doi:10.1016/S00401951(02)005139.
20. Kuznetsov I. V., KeilisBorok V.I. The Interrelation of еarthquakes of the Pacific seismic belt // Doklady Earth Sciences. 1997. V. 355. № 3–6. P. 869–873.
21. Liu G. The cenozoic rift system of the North China plain and the deep internal process // Tectonophysics. 1987. V. 133. № 3–4. P. 277–285. doi:10.1016/00401951(87)902708.
22. Liu M., Yang Y., Shen Z. et al. Active tectonics and intracontinental earthquakes in China: the kinematics and geodynamics // Continental intraplate earthquakes: science, hazard and policy. Geological Society of America Special Paper 425. 2007. P. 299–318. doi:10. 1130/2007.2425(19).
23. Ma X., Wu. D. Cenozoic extensional tectonics in China // Tectonophysics. 1987. V. 133. P. 243–255. doi:10.1016/00401951(87) 90268X.
24. Menzies M., Xu Y., Zhang H., Fan W. Integration of geology, geophysics and geochemistry: a key to understanding the North China craton // Lithos. 2007. V. 96. № 1–2. P. 1–21. doi:10.1016/ j.lithos.2006.09.008.
25. Molnar P., Tapponier P. Cenozoic tectonics of Asia: Effects of a continental collision // Science. 1975. V. 159. P. 419–426. doi:10.1126/ science.189.4201.419.
26. Nabelek J., Chen W.P., Ye H. The Tangshan earthquake sequence and its implications for the evolution of the North China basin // Journal of Geophysical Research. 1987. V. 92. № B12. P. 12615–12628. doi:10.1029/JB092iB12p12615.
27. Peng P., Zhai M., Ernst R. et al. A 1.78 Ga Large igneous province in the North China craton: The Xiong’er volcanic province and the North China dyke swarm // Lithos. 2008. V. 101. P. 260–280. doi:10.1016/j.lithos.2007.07.006.
28. Scholz C.H. A physical interpretation of the Haicheng earthquake prediction // Nature. 1977. V. 267. P. 121–124. doi:10.1038/267121a0.
29. Sherman S. I. A tectonophysical model of a seismic zone: Experience of development based on the example of the Baikal rift system // Izvestiya, Physics of the Solid Earth. 2009. V. 45. № 11. P. 938–951. doi:10.1134/S1069351309110020.
30. Sherman S.I., Zlogodukhova О.G. Seismic belts and zones of the Earth: Formalization of notions, positions in the lithosphere, and structural control // Geodynamics & Tectonophysics. 2011. V. 2. № 1. P. 1–34. doi:10.5800/GT2011210031.
31. Stepashko A.A. Deep roots of seismotectonics in the Far East: The Sakhalin zone // Russian Journal of Pacific Geology. 2010. V. 4. № 3. P. 228–241. doi:10.1134/S181971401003005X.
32. Stepashko A.A. Deep roots of seismotectonics of the Far East: The Amur River and Primorye zones // Russian Journal of Pacific Geology. 2011. V. 5. № 1. P. 1–12. doi:10.1134/S1819714011010076.
33. Stone R. An Unpredictably Violent fault // Science. 2008. V. 320. № 5883. P. 1578–1580. doi:10.1126/science.320.5883.1578.
34. Stone R. China Grapples with seismic risk in its Northern heartland // Science. 2006. V. 313. № 5787. P. 599. doi:10.1126/science.313. 5787.599.
35. Vikulin A.V. Energy and moment of the Earth's rotation elastic field // Russian Geology and Geophysics. 2008. V. 49. № 6. P. 422–429. doi:10.1016/j.rgg.2007.11.012.
36. Wang J.M. The Fenwei rift and its recent periodic activity // Tectonophysics. 1987. V. 133. № 3–4. P. 257–275. doi:10.1016/00401951 (87)902691.
37. Wang S., Zhang Z. Plasticflow waves (‘slow waves’) and seismic activity in CentralEastern Asia // Earthquake research in China. 2005. V. 19. № 1. P. 74–85.
38. Wang X., Chen J., Griffin W.L., O’Reilly P.Y., Huang X.L. Two stages of zircon crystallization in the Jingshan monzogranite, Bengbu Uplift: implications for the syncollisional granites of the DabieSulu UHP orogenic belt and the climax of movement on the Tan-Lu fault // Lithos. 2011. V. 122. № 3–4. P. 201–213. doi:10.1016/ j.lithos.2010.12.014.
39. Xu J., Zhu G., Tong W., Cui K., Liu Q. Formation and evolution of the TanchengLujiang wrench fault system: a major shear system to the northwest of the Pacific ocean // Tectonophysics. 1987. V. 134. P. 273–310. doi:10.1016/00401951(87)90342-8.
40. Xu X., Deng Q. Nonlinear characteristics of paleoseismicity in China // Journal of Geophysical Research. 1996. V. 101. № B3. P. 6209–6231. doi:10.1029/95JB01238.
41. Xu X., Griffin W.L., O’Reilly S.Y., Pearson N.J., Geng H., Zheng J. ReOs isotopes of sulfides in mantle xenoliths from Eastern China: progressive modification of lithospheric mantle // Lithos. 2008. V. 102. № 1–2. P. 43–64. doi:10.1016/j.lithos.2007.06.010.
42. Xu Y.G. Thermotectonic destruction of the Archaean lithospheric keel beneath the SinoKorean сraton in China: evidence, timing and mechanism // Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy. 2001. V. 26. № 9–10. P. 747–757. doi:10.1016/ S1464-1895(01)00124-7.
43. Ye H., Zhang B., Mao F. The Cenozoic tectonic evolution of the Great North China: two types of rifting and crustal necking in the Great North China and their tectonic implications // Tectonophysics. 1987. V. 133. P. 217–227. doi:10.1016/0040-1951(87)90265-4.
44. Zheng J.P., Griffin W.L., O’Reilly S.Y., Yu C.M., Zhang H.F., Pearson N., Zhang M. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China craton: peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis // Geochimica et Cosmochimica Acta. 2007. V. 71. № 21. P. 5203–5225. doi:10.1016/j.gca.2007.07.028.
45. Zheng J.P., O’Reilly S.Y., Griffin W.L., Lu F., Zhang M., Pearson N.J. Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution // Lithos. 2001. V. 57. № 1. P. 43–66. doi:10.1016/S0024-4937(00)00073-6.
46. Zoback M.D. Climate and intraplate shocks // Nature. 2010. V. 466. P. 568–569. doi:10.1038/466568a.
Review
For citations:
Stepashko A.A. SEISMODYNAMICS AND DEEP INTERNAL ORIGIN OF THE NORTH CHINA ZONE OF STRONG EARTHQUAKES. Geodynamics & Tectonophysics. 2011;2(4):341-355. (In Russ.) https://doi.org/10.5800/GT-2011-2-4-0049