Preview

Geodynamics & Tectonophysics

Advanced search

OBSERVATION OF ULF ELECTROMAGNETIC EMISSIONS BEFORE THE M 7.8 NEW ZEALAND EARTHQUAKE OF NOVEMBER 13, 2016

https://doi.org/10.5800/GT-2021-12-4-0561

Abstract

We analyzed the ground geomagnetic data obtained from a 3-component fluxgate magnetometer at the Eyrewell Geomagnetic Observatory (New Zealand) (43.474 °S, 172.393 °E) from October 1 to December 31, 2016. The study aimed to investigate electromagnetic precursors associated with the M 7.8 New Zealand earthquake of November 13, 2016. This earthquake occurred 54 km northeast of Amberley (New Zealand). Its epicenter was located 158 km from the Eyrewell Observatory. We used three methods focused on the polarization ratio, fractal dimension and principal component analysis to identify anomalies in the geomagnetic data. The time series showed an enhanced polarization ratio at two times, October 20 and October 30, 2016, i.e. before the occurrence of the New Zealand earthquake, and a value ~1 or more during these instances. Since the global geomagnetic indices Kp and Dst were normal in these cases, the enhanced polarization ratio may be related to the preparation phase of the New Zealand earthquake. To further classify them, we applied the principal component analysis to the magnetic data on component H. The first three principal components showed more than 90 % of the variance of the original ultra-low frequency (ULF) magnetic field time series. The first principal component was found to be well correlated with the storm index (Dst) recorded during this period. Again, the second principal component was dominated by daily variations, which were the periodic component of the recorded ULF magnetic field. The temporal variation of the third principal component was analyzed to verify a possible correlation between the ULF emissions and the occurrence of the earthquake. The fractal dimension of components D and Z of the magnetic data decreased initially and sharply increased three days before the New Zealand earthquake.

About the Authors

S. K. Sahoo
Institute of Seismological Research
India

Sushanta Ku Sahoo

Gandhinagar 382009, Gujarat State



M. Katlamudi
Institute of Seismological Research
India

Gandhinagar 382009, Gujarat State



G. Udaya Lakshmi
Osmania University
India

Hyderabad 500007, Telangana State



References

1. Akinaga Y., Hayakawa M., Liu J.Y., Yumoto K., Hattori K., 2001. A Precursory ULF Signature for the Chi-Chi Earthquake in Taiwan. Natural Hazards and Earth System Sciences 1 (1/2), 33–36. https://doi.org/10.5194/nhess-1-33-2001.

2. Alken P., Maute A., Richmond A.D., Vanhamäki H., Egbert G.D., 2017. An Application of Principal Component Analysis to the Interpretation of Ionospheric Current Systems. Journal of Geophysical Research: Space Physics 122 (5), 5687–5708. https://doi.org/10.1002/2017JA024051.

3. Arora B.R., Rawat G., Kumar N., Choubey V.M., 2012. Multi-Parameter Geophysical Observatory: Gateway to Integrated Earthquake Precursory Research. Current Science 103 (11), 1286–1299.

4. Bak P., Tang C., Wiesenfeld K., 1987. Self-Organized Criticality: An Explanation of 1/f Noise. Physical Review Letters 59 (4), 381–384. https://doi.org/10.1103/PhysRevLett.59.381.

5. Berry M.V., 1979. Diffractals. Journal of Physics A: Mathematical and General 12 (6), 207–220.

6. Burlaga L.F., Klein L.W., 1986. Fractal Structure of the Interplanetary Magnetic Field. Journal of Geophysical Research: Space Physics 91 (A1), 347–350. https://doi.org/10.1029/JA091iA01p00347.

7. Chauhan V., Pandey U., Singh B., Arrora B.R., Rawat G., Pathan B.M., Sinha A.K., Sharma A.K., Patil A.V., 2012. A Search for Precursors of Earthquakes from Multi-Station ULF Observations and TEC Measurements in India. Indian Journal of Radio and Space Physics 41, 543–556.

8. Chen C.-H., Liu J.-Y., Lin P.-Y., Yen H.-Y., Hattori K., Liang W.-T., Zeng X., 2010. Pre-Seismic Geomagnetic Anomaly and Earthquake Location. Tectonophysics 489 (1–4), 240–247. https://doi.org/10.1016/j.tecto.2010.04.018.

9. Dudkin F., Rawat G., Arora B.R., Korepanov V., Leontyeva O., Sharma A.K., 2010. Application of Polarization Ellipse Technique for Analysis of ULF Magnetic Fields from Two Distant Stations in Koyna-Warna Seismoactive Region, West India. Natural Hazards and Earth System Sciences 10 (7), 1513–1522. https://doi.org/10.5194/nhess-10-1513-2010.

10. Fedorov E., Pilipenko V., Uyeda S., 2001. Electric and Magnetic Fields Generated by Electrokinetic Processes in a Conductive Crust. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science 26 (10–12), 793–799. https://doi.org/10.1016/S1464-1917(01)95027-5.

11. Fraser-Smith A.C., Bernardi A., McGill P.R., Ladd M.E., Helliwell R.A., Villard Jr.A.D., 1990. Low-Frequency Magnetic Field Measurements near the Epicenter of the Ms 7.1 Loma-Prieta Earthquake. Geophysical Research Letters 17 (9), 1465–1468. https://doi.org/10.1029/GL017i009p01465.

12. Gokhberg M.B., Morgounov V.A., Pokhotelov O.A., 1995. Earthquake Prediction: Seismo-Electromagnetic Phenomena. Gordon & Breach, Australia, USA, 193 p.

13. Gotoh K., Hayakawa M., Smirnova N., 2003. Fractal Analysis of the ULF Geomagnetic Data Obtained at Izu Peninsula, Japan in Relation to the Nearly Earthquake Swarm of June–August 2000. Natural Hazards and Earth System Sciences 3 (3/4), 229–236. https://doi.org/10.5194/nhess-3-229-2003.

14. Gotoh K., Hayakawa M., Smirnova N., Hattori K., 2004. Fractal Analysis of Seismogenic ULF Emissions. Physics and Chemistry of the Earth, Parts A/B/C 29 (4–9), 419–424. https://doi.org/10.1016/j.pce.2003.11.013.

15. Han Q., Carpinteri A., Lacidogna G., Xu J., 2015. Fractal Analysis and Yule Statistics for Seismic Prediction Based on 2009 L’Aquilla Earthquake in Italy. Arabian Journal of Geosciences 8, 2457–2465. https://doi.org/10.1007/s12517-014-1386-y.

16. Hattori K., 2004. ULF Geomagnetic Changes Associated with Large Earthquakes. Terrestrial, Atmospheric and Oceanic Sciences 15 (3), 329–360. https://doi.org/10.3319/TAO.2004.15.3.329(EP).

17. Hayakawa M., 2001. NASDA’s Earthquake Remote Sensing Frontier Research. Seismo-Electromagnetic Phenomena in the Lithosphere, Atmosphere and Ionosphere. Final Report. University of Electro-Communications, Tokyo, 228 p.

18. Hayakawa M., Hattori K., Ohta K., 2007. Monitoring of ULF (Ultra-Low-Frequency) Geomagnetic Variation Associated with Earthquakes. Sensors 7 (7), 1108–1122. https://doi.org/10.3390/s7071108.

19. Hayakawa M., Ito T., Hattori K., Yumoto K., 2000. ULF Electromagnetic Precursors for an Earthquake at Biak, Indonesia on 17 February, 1996. Geophysical Research Letters 27 (10), 1531–1534. https://doi.org/10.1029/1999GL005432.

20. Hayakawa M., Kawate R., Molchanov O.A., Yumoto K., 1996. Results of Ultra-Low-Frequency Magnetic Field Measurements during the Guam Earthquake of 8 August, 1993. Geophysical Research Letters 23 (3), 241–244. https://doi.org/10.1029/95GL02863.

21. Hayakawa M., Tetsuya I., Smirnova N., 1999. Fractal Analysis of ULF Geomagnetic Data Associated with the Guam Eearthquake on August 8, 1993. Geophysical Research Letters 26 (18), 2797–2800. https://doi.org/10.1029/1999GL005367.

22. Higuchi T., 1988. Approach to an Irregular Time Series on the Basis of the Fractal Theory. Physica D: Nonlinear Phenomena 31 (2), 277–283. https://doi.org/10.1016/0167-2789(88)90081-4.

23. Ida Y., Hayakawa M., 2006. Fractal Analysis for the ULF Data during the 1993 Guam Earthquake to Study Prefracture Criticality. Nonlinear Processes in Geophysics 13 (4), 409–412. https://doi.org/10.5194/npg-13-409-2006.

24. Ida Y., Yang D., Li Q., Sun H., Hayakawa M., 2012. Fractal Analysis of ULF Electromagnetic Emissions in Possible Association with Earthquakes in China. Nonlinear Processes in Geophysics 19 (5), 577–583. https://doi.org/10.5194/npg-19-577-2012.

25. Kopytenko Yu.A., Matiashvili T.G., Voronov P.M., Kopytenko F.A., Molchanov O.A., 1990. Ultra Low Frequency Emissions Associated with Spitak Earthquake and Following Aftershock Activity using Geomagnetic Pulsation Data at Observatories Dusheti and Vordziya. Preprint of IZMIRAN N3(888).

26. Kumar N., Rawat G., Choubey V.M., Hazarika D., 2013. Earthquake Precursory Research in Western Himalaya Based on the MPGO Data. Acta Geophysica 61, 977–999. https://doi.org/10.2478/s11600-013-0133-1.

27. Labib K., Vemuri V.R., 2004. An Application of Principal Component Analysis to the Detection and Visualization of Computer Network Attacks. Annales Des Télécommunications 61, 218–234. https://doi.org/10.1007/BF03219975.

28. Leitner B., Eberhart-Phillips D., Anderson H., Nabelek J.L., 2001. A Focused Look at the Alpine Fault, New Zealand: Seismicity, Focal Mechanisms, and Stress Observations. Journal of Geophysical Research: Solid Earth 106 (B2), 2193–2220. http://doi.org/10.1029/2000JB900303.

29. Li J., Li Q., Yang D., Wang X., Hong D., He K., 2011. Principal Component Analysis of Geomagnetic Data for the Panzhihua Earthquake (Ms 6.1) in August 2008. Data Science Journal 10, IAGA130–IAGA138. http://doi.org/10.2481/dsj.IAGA-20.

30. Mandea M., Purucker M., 2005. Observing: Modeling, and Interpreting Magnetic Fields of the Solid Earth. Surveys in Geophysics 26, 415–459. https://doi.org/10.1007/s10712-005-3857-x.

31. Masci F., Palangio P., Di Persio M., 2009. Magnetic Anomalies Possibly Linked to Local Low Seismicity. Natural Hazards and Earth System Sciences 9 (5), 1567–1572. https://doi.org/10.5194/nhess-9-1567-2009.

32. Molchanov O., Fedorov E., Schekotov A., Gordeev E., Chebrov V., Surkov V., Rozhnoi A., Andreevsky S. et al., 2004. Lithosphere-Atmosphere-Ionosphere Coupling as Governing Mechanism for Preseismic Short-Term Events in Atmosphere and Ionosphere. Natural Hazards and Earth System Sciences 4, 757–767. https://doi.org/10.5194/nhess-4-757-2004.

33. Molchanov O.A., Hayakawa M., 1998. On the Generation Mechanism of ULF Seismogenic Electromagnetic Emissions. Physics of the Earth and Planetary Interiors 105 (3–4), 201–210. https://doi.org/10.1016/S0031-9201(97)00091-5.

34. Molchanov O., Kulchisky A., Hayakawa M., 2001. Inductive Seismo-Electromagnetic Effect in Relation to Seismogenic ULF Emission. Natural Hazards and Earth System Sciences 1 (1/2), 61–67. https://doi.org/10.5194/nhess-1-61-2001.

35. Pulinets S.A., Boyarchuk K.A., 2004. Ionospheric Precursors of Earthquakes. Springer, Berlin, 315 p. https://doi.org/10.1007/b137616.

36. Quereshi N.A., Suthar V., Magsi H., Sheikh M.J., Pathan M., Qureshi B., 2017. Application of Principal Component Analysis to Medical Data. Indian Journal of Science and Technology 10 (20), 1–9. https://doi.org/10.17485/ijst/2017/v10i20/91294.

37. Rawat G., 2014. Characteristics ULF Band Magnetic Variations at MPGO, GHUTTU for the 20 June, 2011 Earthquake in Garhwal Himalaya. Current Science 106 (1), 88–93.

38. Rawat G., Chauhan V., Damodharan S., 2016. Fractal Dimension Variability in ULF Magnetic Field with Reference to Local Earthquakes at MPGO, Ghuttu. Geomatics, Natural Hazards and Risk 7 (6), 1937–1947. https://doi.org/10.1080/19475705.2015.1137242.

39. Schekotov A.Y., Molchanov O.A., Hayakawa M., Fedorov E.N., Chebrov V.N., Sinitsin V.I., Gordeev E.E., Andreevsky S.E. et al., 2008. About Possibility to Locate an EQ Epicenter Using Parameters of ELF/ULF Preseismic Emission. Natural Hazards and Earth System Sciences 8 (6), 1237–1242. https://doi.org/10.5194/nhess-8-1237-2008.

40. Serita A., Hattori K., Yoshino C., Hayakawa M., Isezaki N., 2005. Principal Component Analysis and Singular Spectrum Analysis of ULF Geomagnetic Data Associated with Earthquakes. Natural Hazards and Earth System Sciences 5 (5), 685–689. https://doi.org/10.5194/nhess-5-685-2005.

41. Smirnova N., Hayakawa M., Gotoh K., 2004. Precursory Behavior of Fractal Characteristics of the ULF Electromagnetic Fields in Seismic Active Zones before Strong Earthquakes. Physics and Chemistry of the Earth 29 (4–9), 445–451. https://doi.org/10.1016/j.pce.2003.11.016.

42. Sutherland R., Norris R.J., 1995. Late Quaternary Displacement Rate, Paleoseismicity, and Geomorphic Evolution of the Alpine Fault: Evidence from Hokuri Creek, South Westland, New Zealand. New Zealand Journal of Geology and Geophysics 38 (4), 419–430. https://doi.org/10.1080/00288306.1995.9514669.

43. Takla E.M., Yumoto K., Okano S., Uozumi T., Abe S., 2013. The Signature of the 2011 Tohoku Mega Earthquake on the Geomagnetic Field Measurements in Japan. NRIAG Journal of Astronomy and Geophysics 2 (2), 185–195. https://doi.org/10.1016/j.nrjag.2013.08.001.

44. Uyeda S., Kamogawa M., Nagao T., 2009. Short-Term Earthquake Prediction: Current Status of Seismo-Electromagnetics. Tectonophysics 470 (3–4), 205–213. http://dx.doi.org/10.1016/j.tecto.2008.07.019.

45. Varotsos P.A., 2005. The Physics of Seismic Electric Signals. TERRAPUB, Tokyo, 338 p.

46. Virk H.S., Walia V., Kumar N., 2001. Helium/Radon Precursory Anomalies of Chamoli Earthquake, Garhwal Himalaya, India. Journal of Geodynamics 31 (2), 201–210. https://doi.org/10.1016/S0264-3707(00)00022-3.

47. Yen H.-Y., Chen C.-H., Yeh Y.-H., Liu J.-Y., Lin C.-R., Tasi Y.-B., 2004. Geomagnetic Fluctuations during the 1999 Chi-Chi Earthquake in Taiwan. Earth Planets Space 56, 39–45. https://doi.org/10.1186/BF03352489.

48. Yoshida S., 2001. Convection Current Generated Prior to Rupture in Saturated Rocks. Journal of Geophysical Research: Solid Earth 106 (B2), 2103–2120. https://doi.org/10.1029/2000JB900346.


Review

For citations:


Sahoo S.K., Katlamudi M., Udaya Lakshmi G. OBSERVATION OF ULF ELECTROMAGNETIC EMISSIONS BEFORE THE M 7.8 NEW ZEALAND EARTHQUAKE OF NOVEMBER 13, 2016. Geodynamics & Tectonophysics. 2021;12(4):891-901. https://doi.org/10.5800/GT-2021-12-4-0561

Views: 534


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)