GEOCHRONOLOGY OF THE CHADOBETS ALKALINE ULTRAMAFIC CARBONATITE COMPLEX (SIBERIAN CRATON): NEW U-Pb AND Ar-Ar DATA
https://doi.org/10.5800/GT-2021-12-4-0559
Abstract
The Chadobets alkaline ultramafic carbonatite complex is located on the Siberian craton within the southern boundary of the Permian-Triassic plume activity. The dating of xenogenic zircons from the weathering crust of carbonatites of the Chuktukon complex yielded four clusters with ages of 1870–1820, 495–385, 290–210 and 215–162 Ma. The first two clusters correspond to the dates of activity of Paleoproterozoic granitoid magmatism and Paleozoic alkaline-mafic tectono-magmatic activity, widely occurred in the Siberian craton and its southern framing. The age of crystallization of alkaline rocks of the Chadobets complex falls within the interval of 255–240 Ma. Ar-Ar dating of damtjernite and carbonatite minerals of the Chuktukon complex falls within the intervals of 250.5±3.7 and 247.1±5.7 Ma, respectively. The crystallization ages of the mela-aillikites and damtjernites of the Terina complex, according to the Ar-Ar dating, correspond to the intervals of 257.4±3.9, 241.1±3.7, and 240±3.6 Ma. The age interval of 215–162 Ma based on zircons from the carbonatite weathering crust of the Chuktukon complex reflects the geochronology of superimposed processes and indicates the different stages of alteration of igneous rocks of the Chadobets complex. The data obtained on the age of crystallization of alkaline rocks of the Chadobets complex are consistent with the age interval of Siberian plume activity within a large igneous province (LIP).
Keywords
About the Authors
I. R. ProkopyevRussian Federation
Ilya R. Prokopyev
3 Academician Koptyug Ave, Novosibirsk 630090,
1 Pirogova St, Novosibirsk 630090
A. G. Doroshkevich
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090,
6 Sakhyanova St, Ulan-Ude 670047, Buryatian Republic
A. V. Malyutina
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090,
1 Pirogova St, Novosibirsk 630090
A. E. Starikova
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090,
1 Pirogova St, Novosibirsk 630090
A. V. Ponomarchuk
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
D. V. Semenova
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
S. A. Kovalev
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090,
1 Pirogova St, Novosibirsk 630090
I. A. Savinsky
Russian Federation
1 Pirogova St, Novosibirsk 630090
References
1. Bagdasarov Yu.A., Nechaeva E.A., Frolov A.A., 1972. Chadobets Province of Ultrabasic Rocks and Carbonatites. In: Geology of Rare Metal Deposits. Vol. 35. Moscow, p. 176–178 (in Russian)
2. Baksi A.K., Archibald D.A., Farrar E., 1996. Intercalibration of 40Ar/39Ar Dating Standards. Chemical Geology 129 (3–4), 307–324. https://doi.org/10.1016/0009-2541(95)00154-9.
3. Basu A.R., Poreda R.J., Renne P.R., Telchmann F., Vasiliev Y.R., Sobolev N.V., Turrin B.D., 1995. High-3He Plume Origin and Temporal–Spatial Evolution of the Siberian Flood Basalts. Science 269 (5225), 825–882. https://doi.org/10.1126/science.269.5225.822.
4. Carlson R.W., Czamanske G., Fedorenko V., Ilupin I., 2006. A Comparison of Siberian Meimechites and Kimberlites: Implications for the Source of High-Mg Alkalic Magmas and Flood Basalts. Geochemistry Geophysics Geosystems 7 (11). https://doi.org/10.1029/2006GC001342.
5. Chebotarev D.A., Doroshkevich A.G., Klemd R., Karmanov N.S., 2017a. Evolution of Nb-Mineralization in the Chuktukon Carbonatite Massif, Chadobets Upland (Krasnoyarsk Territory, Russia). Periodico di Mineralogia 86 (2), 99–118. https://doi.org/10.2451/2017PM733.
6. Chebotarev D.A., Doroshkevich A.G., Sharygin V.V., Yudin D.S., Ponomarchuk A.V., Sergeev S.A., 2017b. Geochronology of the Chuktukon Carbonatite Massif, Chadobets Uplift (Krasnoyarsk Territory). Russian Geology and Geophysics 58 (10), 1222–1231. https://doi.org/10.1016/j.rgg.2017.02.003.
7. Dalrymple G.B., Czamanske G.K., Fedorenko V.A., Simonov O.N., Lanphere M.A., Likhachev A.P., 1995. A Reconnaissance 40Ar/39Ar Geochronologic Study of Ore-Bearing and Related Rocks, Siberian Russia. Geochimica et Cosmochimica Acta 59 (10), 2071–2083. https://doi.org/10.1016/0016-7037(95)00127-1.
8. Dashkevich N.N., Starodubtsev G.S., Germanov E.K., 1962. On Kimberlite Pipes and Chadobets Uplift Structure. In: Materials on Geology and Minerals of the Krasnoyarsk Region. Vol. 3. Krasnoyarsk Book Publishing House, Krasnoyarsk, p. 117–130 (in Russian)
9. Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., Sklyarov E.V., Cho M., Sergeev S.A., Demonterova E.I., Mazukabzov A.M. et al., 2017. Pre-Collisional (>0.5Ga) Complexes of the Olkhon Terrane (Southern Siberia) as an Echo of Events in the Central Asian Orogenic Belt. Gondwana Research 42, 243–263. https://doi.org/10.1016/j.gr.2016.10.016.
10. Donskaya T.V., Gladkochub D.P., Kovach V.P., Mazukabzov A.M., 2005. Petrogenesis of Early Proterozoic Postcollisional Granitoids in the Southern Siberian Craton. Petrology 13 (3), 229–252.
11. Doroshkevich A.G., Chebotarev D.A., Sharygin V.V., Prokopyev I.R., Nikolenko A.M., 2019. Petrology of Alkaline Silicate Rocks and Carbonatites of the Chuktukon Massif, Chadobets Upland, Russia: Sources, Evolution and Relation to the Triassic Siberian LIP. Lithos 332–333, 245–260. https://doi.org/10.1016/j.lithos.2019.03.006.
12. Doroshkevich A.G., Ripp G.S., Izbrodin I.A., Savatenkov V.M., 2012. Alkaline Magmatism of the Vitim Province, West Transbaikalia, Russia: Age, Mineralogical, Geochemical and Isotope (О, C, D, Sr and Nd) Data. Lithos 152, 157–172. https://doi.org/10.1016/j.lithos.2012.05.002.
13. Doroshkevich A.G., Sharygin V.V., Belousova E.A., Izbrodin I.A., Prokopyev I.R., 2021. Zircon from the Chuktukon Alkaline Ultramafic Carbonatite Complex (Chadobets Uplift. Siberian Craton) as Evidence of Source Heterogeneity. Lithos 382–383, 105957. https://doi.org/10.1016/j.lithos.2020.105957.
14. Doroshkevich A.G., Sklyarov E.V., Starikova A.E., Vasiliev V., Ripp G.S., Izbrodin I.A., Posokhov V.F., 2017. Stable Isotope (C, O, H) Characteristics and Genesis of the Tazheran Brucite Marbles and Skarns, Olkhon Region, Russia. Mineralogy and Petrology 111, 399–416. https://doi.org/10.1007/s00710-016-0477-8.
15. Geological Map of the USSR, 1971. Angara-Lena Series. Scale 1:200000. Sheet О-47-IV. Explanatory Note. Moscow, 96 p. (in Russian)
16. Geological Map of the USSR, 1984. Scale 1:1000000 (New Series). Sheet О-(47), 48 (Ust-Kut). Explanatory Note. VSEGEI Publishing House, Leningrad, 172 p. (in Russian)
17. Ghobadi M., Gerdes A., Kogarko L., Hoefer H., Brey G., 2018. In Situ LA-ICPMS Isotopic and Geochronological Studies on Carbonatites and Phoscorites from the Guli Massif, Maymecha-Kotuy, Polar Siberia. Geochemistry International 56, 766–783. https://doi.org/10.1134/S0016702918080049.
18. Gladkochub D.P., Donskaya T.V., Ivanov A.V., Ernst R., Mazukabzov A.M., Pisarevsky S.A., Ukhova N.A., 2010a. Phanerozoic Mafic Magmatism in the Southern Siberian Craton: Geodynamic Implications. Russian Geology and Geophysics 51 (9), 952–964. https://doi.org/10.1016/j.rgg.2010.08.005.
19. Gladkochub D.P., Pisarevsky S.A., Donskaya T.V., Ernst R.E., Wingate M.T.D., Serlund U., Mazukabzov A.M., Sklyarov E.V. et al., 2010b. Proterozoic Mafic Magmatism in Siberian Craton: An Overview and Implications for Paleocontinental Reconstruction. Precambrian Research 183 (3), 660–668. https://doi.org/10.1016/j.precamres.2010.02.023.
20. Gladkochub D.P., Wingate M.T.D., Pisarevsky S.A., Donskaya T.V., Mazukabzov A.M., Ponomarchuk V.A., Stanevich A.M., 2006. Mafic Intrusions in Southwestern Siberia and Implications for a Neoproterozoic Connection with Laurentia. Precambrian Research 147 (3–4), 260–278. https://doi.org/10.1016/j.precamres.2006.01.018.
21. Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y., 2008. GLITTER: Data Reduction Software for Laser Ablation ICPMS. In: P.J. Sylvester (Ed.), Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series. Vol. 40. Vancouver, p. 308–311.
22. Hiess J., McLean N., Condon D.J., Noble S.R., 2012. 238U/235U Systematics in Terrestrial Uranium-Bearing Minerals. Science 335 (6076), 1610–1614. https://doi.org/10.1126/science.1215507.
23. Ivanov A.V., He H., Yan L., Ryabov V.V., Shevko A.Y., Palesskii S.V., Nikolaeva I.V., 2013. Siberian Traps Large Igneous Province: Evidence for Two Food Basalt Pulses around the Permo-Triassic Boundary and in the Middle Triassic, and Contemporaneous Granitic Magmatism. Earth-Science Reviews 122, 58–76. https://doi.org/10.1016/j.earscirev.2013.04.001.
24. Jackson S.E., Griffin W.L., Pearson N.J., Belousova E.A., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology. Chemical Geology 211 (1–2), 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017.
25. Kargin A.V., Golubeva Y.Y., Demonterova E.I., Koval’chuk E.V., 2017. Petrographic-Geochemical Types of Triassic Alkaline Ultramafic Rocks in the Northern Anabar Province, Yakutia, Russia. Petrology 25, 535–565. https://doi.org/10.1134/S0869591117060030.
26. Kargin A.V., Nosova A.A., Postnikov A.V., Chugaev A.V., 2016. Devonian Ultramafic Lamprophyre in the Irkineeva–Chadobets Trough in the Southwest of the Siberian Platform: Age, Composition, and Implications for Diamond Potential Prediction. Geology of Ore Deposits 58, 383–403. https://doi.org/10.1134/S1075701516050068.
27. Kogarko L.N., Zartman R.E., 2011. New Data on the Age of the Guli Intrusion and Implications for the Relationships between Alkaline Magmatism in the Maymecha–Kotuy Province and the Siberian Superplume: U–Th–Pb Isotopic Systematics. Geochemistry International 49, 439–448. https://doi.org/10.1134/S0016702911050065.
28. Kozakov I.K., Kovach V.P., Yarmolyuk V.V., Kotov A.B., Salnikova E.B., Zagornaya N.Yu., 2003. Crust-Forming Processes in the Geologic Development of the Tuva–Mongolia Massif: Sm–Nd Isotopic and Geochemical Data for Granitoids. Petrology 11 (5), 444–463.
29. Kuzmin M.I., Yarmolyuk V.V., Kravchinsky V.A., 2010. Phanerozoic Hot Spot Traces and Paleogeographic Reconstructions of the Siberian Continent Based on Interaction with the African Large Low Shear Velocity Province. Earth-Science Reviews 102 (1–2), 29–59. https://doi.org/10.1016/j.earscirev.2010.06.004.
30. Lapin A.V., 1997. Structure, Formation Conditions and Ore Content of the Major Types of Carbonatite Weathering Crusts. National Geology 11, 15–22 (in Russian)
31. Lapin A.V., 2001. On Kimberlites of the Chadobets Uplift as Related to the Problem of Formation-Metallogenic Analysis of the Platform Alkaline Ultrabasic Magmatites. National Geology 4, 30–34 (in Russian)
32. Lapin A.V., Lisitsin D.V., 2004. Mineralogical Typomorphism of Alkaline Ultrabasic Magmatites of Chadobets Rise. National Geology 6, 83–92 (in Russian)
33. Letnikova E.F., Izokh A.E., Nikolenko E.I., Pokhilenko N.P., Shelestov V.O., Hilen Geng, Lobanov S.S., 2014. Late Triassic High-Potassium Trachitic Volcanism of the Northeast of the Siberian Platform: Evidence in the Sedimentary Record. Doklady Earth Sciences 459, 1344–1347. https://doi.org/10.1134/S1028334X14110221.
34. Lomaev V.G., Serdyuk S.S., 2011. Chuktukon Deposit of the Niobium-Rare Earth Ores is the Top Priority Asset for Modernization of the Rare Metal Industry of Russia. Journal of Siberian Federal University. Engineering & Technologies 4 (2), 132–154 (in Russian)
35. Ludwig K.R., 2003. ISOPLOT/Ex: A Geochronological Toolkit for Microsoft Excel. Version 3.00. Berkeley Geochronology Center Special Publication 4, 74 p.
36. Makhneva N.A., Makhneva G.G., Belyakova E.V. et al., 2016. Prospect Evaluation Report on the Chuktukon Ore Deposit (Krasnoyarsk Region). State Contract № 198 of September 9, 2014. Book 1. 210 p. (in Russian)
37. Malich K.N., Khiller V.V., Badanina I.Yu., Belousova E.A., 2015. Results of Dating of Thorianite and Baddeleyite from Carbonatites of the Guli Massif, Russia. Doklady Earth Sciences 464, 1029–1032. https://doi.org/10.1134/S1028334X15100050.
38. Nikiforov A.V., Yarmolyuk V.V., 2007. Early Paleozoic Age and Geodynamic Setting of the Botogol and Khushagol Alkaline Massifs in the Central Asian Fold Belt. Doklady Earth Science 412, 6–10. https://doi.org/10.1134/S1028334X07010023.
39. Nosova A.A., Kargin A.V., Sazonova L.V., Dubinina E.O., Chugaev A.V., Lebedeva N.M., Yudin D.S., Larionova Y.O. et al., 2020. Sr-Nd-Pb Isotopic Systematic and Geochronology of Ultramafic Alkaline Magmatism of the Southwestern Margin of the Siberian Craton: Metasomatism of the Subcontinental Lithospheric Mantle Related to Subduction and Plume Events. Lithos 364–365, 105509. https://doi.org/10.1016/j.lithos.2020.105509.
40. Nosova A.A., Sazonova L.V., Kargin A.V., Smirnova M.D., Lapin A.V., Shcherbakov V.D., 2018. Olivine in Ultramafic Lamprophyres: Chemistry, Crystallisation and Melt Sources of Siberian Pre- and Post-Trap Aillikites. Contributions to Mineralogy and Petrology 173, 55. https://doi.org/10.1007/s00410-018-1480-3.
41. Nugumanova Ya., Doroshkevich A., Prokopyev I., Starikova A., 2021. Compositional Variations of Spinels from Ultramafic Lamprophyres of the Chadobets Complex (Siberian Craton, Russia). Minerals 11 (5), 456. https://doi.org/10.3390/min11050456.
42. Paton M.T., Ivanov A.V., Fiorentini M.L., McNaughton M.J., Mudrovska I., Reznitskii L.Z., Demonterova E.I., 2010. Late Permian and Early Triassic Magmatic Pulses in the Angara-Taseeva Syncline, Southern Siberian Traps and Their Possible Influence on the Environment. Russian Geology and Geophysics 51 (9), 1012–1020. https://doi.org/10.1016/j.rgg.2010.08.009.
43. Pernet-Fisher J.F., Howarth G.H., Pearson D.G., Woodland S., Barry P.H., Pokhilenko N.P., Agashev A.M., Taylor L.A., 2015. Plume Impingement on the Siberian SCLM: Evidence from Re-Os Isotope Systematics. Lithos 218–219, 141–154. https://doi.org/10.1016/j.lithos.2015.01.010.
44. Poller U., Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., Sklyarov E.V., Todt W., 2005. Multistage Magmatic and Metamorphic Evolution in the Southern Siberian Craton: Archean and Paleoproterozoic Zircon Ages Revealed by SHRIMP and TIMS. Precambrian Research 136 (3–4), 353–368. https://doi.org/10.1016/j.precamres.2004.12.003.
45. Prokopyev I., Starikova A., Doroshkevich A., Nugumanova Y., Potapov V., 2020. Petrogenesis of Ultramafic Lamprophyres from the Terina Complex (Chadobets Upland, Russia): Mineralogy and Melt Inclusion Composition. Minerals 10 (5), 419. https://doi.org/10.3390/min10050419.
46. Sklyarov E.V., Fedorovsky V.S., Kotov A.B., Lavrenchuk A.V., Mazukabzov A.M., Levitsky V.I., Sal’nikova E.B., Starikova A.E., 2009. Carbonatites in Collisional Settings and Pseudo-Carbonatites of the Early Paleozoic Ol’khon Collisional System. Russian Geology and Geophysics 50 (12), 1091–1106. https://doi.org/10.1016/j.rgg.2009.11.008.
47. Sklyarov R.Ya., 1962. Some Features of the Geological Structure of the Chadobets Anticlinal Uplift. In: Materials on Geology and Minerals of the Krasnoyarsk Region. Vol. 3. Krasnoyarsk Book Publishing House, Krasnoyarsk, p. 21–31 (in Russian)
48. Slama J., Kosler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A. et al., 2008. Plesovice Zircon – A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology 249 (1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.
49. Slukin A.D., 1973. Weathering Crusts and Bauxites of the Chadobets Uplift. Nauka, Moscow, 148 p. (in Russian)
50. Starikova A., Prokopyev I., Doroshkevich A., Ragozin A., Chervyakovsky V., 2021. Polygenic Nature of Olivines from the Ultramafic Lamprophyres of the Terina Complex (Chadobets Upland, Siberian Platform) Based on Trace Element Composition, Crystalline, and Melt Inclusion Data. Minerals 11 (4), 408. https://doi.org/10.3390/min11040408.
51. Starikova A.E., Sklyarov E.V., Kotov A.B., Sal’nikova E.B., Fedorovskii V.S., Lavrenchuk A.V., Mazukabzov A.M., 2014. Vein Calciphyre and Contact Mg Skarn from the Tazheran Massif (Western Baikal Area, Russia): Age and Genesis. Doklady Earth Sciences 457, 1003–1007. https://doi.org/10.1134/S1028334X14080182.
52. Starosel’tsev V.S., 2009. Identifying Paleorifts as Promising Tectonic Elements for Active Oil and Gas Generation. Russian Geology and Geophysics 50 (4), 358–364. https://doi.org/10.1016/j.rgg.2009.03.011.
53. State Geological Map of the Russian Federation, 2012. Angara-Yenisei Series. Scale 1:1000000. Sheet 0-47 (Bratsk). Explanatory Note. VSEGEI Publishing House, Saint Petersburg, 470 p. (in Russian)
54. Steiger R.H., Jager E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geoand Cosmochronology. Earth and Planetary Science Letters 36 (3), 359–361. https://doi.org/10.1016/0012-821X(77)90060-7.
55. Sun J., Liu C., Tappe S., Kostrovitsky S.I., Wu F.-Y., Yakovlev D., Yang Y.-H., Yang J.-H., 2014. Repeated Kimberlite Magmatism beneath Yakutia and Its Relationship to Siberian Flood Volcanism: Insights from in Situ U–Pb and Sr–Nd Perovskite Isotope Analysis. Earth and Planetary Science Letters 404, 283–295. https://doi.org/10.1016/j.epsl.2014.07.039.
56. Tappe S., Foley S.F., Jenner G.A., Kjarsgaard B.A., 2005. Integrating Ultramafic Lamprophyres into the IUGS Classification of Igneous Rocks: Rationale and Implications. Journal of Petrology 46 (9), 1893–1900. https://doi.org/10.1093/petrology/egi039.
57. Travin A.V., 2016. Thermochronology of Subduction-Collision and Collision Events in the Central Asia. Brief PhD Thesis (Doctor of Geology and Mineralogy). Novosibirsk, 55 p. (in Russian)
58. Tsykina S.V., 2003. Zoning of Rare-Metal Mineralization of the Carbonatite Weathering Crust of the Chuktukon Deposit. In: Geology and Mineral Recourses of the Central Siberia. Iss. 4. Krasnoyarsk Research Institute of Geology and Mineral Resources, Krasnoyarsk, p. 153–158 (in Russian)
59. Vladimirov A.G., Gibsher A.S., Izokh A.E., Rudnev S.N., 1999. Early Paleozoic Granitoid Batholiths of Central Asia: Abundance, Sources, and Geodynamic Formation Conditions. Doklady Earth Sciences 369А, 1268–1271.
60. Vrublevskii V.V., Voitenko N.N., Romanov A.P., Polyakov G.V., Izokh A.E., Gertner I.F., Krupchatnikov V.I., 2005. Magma Sources of Triassic Lamproites of Gornyi Altai and Taimyr: Sr and Nd Isotope Evidence for Plume–Lithosphere Interaction. Doklady Earth Sciences 405A (9), 1365–1367.
61. Yarmolyuk V.V., Kovalenko V.I., 2003. Deep Geodynamics and Mantle Plumes: Role Information of the Central-Asian Folded Belt. Petrology 11 (6), 504–531.
Review
For citations:
Prokopyev I.R., Doroshkevich A.G., Malyutina A.V., Starikova A.E., Ponomarchuk A.V., Semenova D.V., Kovalev S.A., Savinsky I.A. GEOCHRONOLOGY OF THE CHADOBETS ALKALINE ULTRAMAFIC CARBONATITE COMPLEX (SIBERIAN CRATON): NEW U-Pb AND Ar-Ar DATA. Geodynamics & Tectonophysics. 2021;12(4):865-882. (In Russ.) https://doi.org/10.5800/GT-2021-12-4-0559