Preview

Geodynamics & Tectonophysics

Advanced search

STRESS FIELD IN A SHEAR ZONE, AND FORMATION OF THE MAIN FAULT

https://doi.org/10.5800/GT-2021-12-3-0536

Abstract

Using the analytical approximation method, we calculated stress field parameters for cases with different relative positions of Riedel shears and loads required for shearing. Considering an internal friction angle of 30°, and the distance between adjacent shears exceeding 0.7 of the characteristic shear length, we estimated the Coulomb stress that can lead to fracturing. In the areas between the shears, it is below the shear strength value. This means that if an increase in the external load is lacking, there are no prerequisites for the formation of new fractures that may connect adjacent shears. If the shears are spaced closer to each other (i.e. at distances less than 0.7 of the shear length), the shear strength is exceeded in the areas between them, and new shears can occur there and connect the Riedel shears to each other. Therefore, in observations of a natural system of Riedel shears, it becomes possible to assess whether this system is sufficiently stable in its current status, or, in case of a critical increase in the Coulomb stress in the areas between adjacent shears, the equilibrium can be easily disturbed, and there is a possibility that the main fault forms in the strike-slip zone under study.

About the Author

A. S. Lermontova
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Russian Federation

10-1 Bolshaya Gruzinskaya St, Moscow 123242



References

1. Bornyakov S.A., 1981. Tectonophysical Analysis of Formation of a Transform Zone in an Elastic-Viscous Model. In: N.A. Logachev, S.I. Sherman (Eds), Problems of Fault Tectonics. Nauka, Novosibirsk, p. 26–44 (in Russian) [Борняков С.А. Тектонофизический анализ процесса формирования трансформной зоны в упруговязкой модели // Проблемы разломной тектоники / Ред. Н.А. Логачев, С.И. Шерман. Новосибирск: Наука, 1981. C. 26–44].

2. Cunningham W.D., 1993. Strike-Slip Faults in the Southernmost Andes and the Development of the Patagonian Orocline. Tectonics 12 (1), 169–186. https://doi.org/10.1029/92TC01790.

3. Dooley T.P., Schreurs G., 2012. Analogue Modelling of Intraplate Strike-Slip Tectonics: A Review and New Experimental Results. Tectonophysics 574–575, 1–71. https://doi.org/10.1016/j.tecto.2012.05.030.

4. Gintov O.B., 2005. Field Tectonophysics and Its Application in Studies of Deformation of the Earth’s Crust. Phoenix, Kiev, 572 p. (in Russian) [Гинтов О.Б. Полевая тектонофизика и ее применение при изучении деформаций земной коры. Киев: Феникс, 2005. 572 с.].

5. Gogonenkov G.N., Kashik A.S., Timurziev A.I., 2007. Horizontal Displacements of West Siberia’s Basement. Russian Oil and Gas Geology 3, 3–11 (in Russian) [Гогоненков Г.Н., Кашик А.С., Тимурзиев А.И. Горизонтальные сдвиги фундамента Западной Сибири // Геология нефти и газа. 2007. № 3. С. 3–11].

6. Goncharov M.A., Rogozhin E.A., Frolova N.S., Rozhin P.N., Zakharov V.S., 2014. Riedel Megashears R’ and the Trend to Gravitational Equilibrium as Main Factors of Tsunamigenic Earthquakes. Geodynamics & Tectonophysics 5 (4), 939–991 (in Russian) [Гончаров M.А., Рогожин Е.А., Фролова Н.С., Рожин П.Н., Захаров В.С. Mегасколы Риделя R’ и тенденция к гравитационному равновесию как главные факторы цунамигенных землетрясений // Геодинамика и тектонофизика. 2014. Т. 5. № 4. С. 939–991]. https://doi.org/10.5800/gt-2014-5-4-0164.

7. Koronovsky N.V., Gogonenkov G.N., Goncharov M.A., Timurziev A.I., Frolova N.S., 2009. The Role of Shear along the Horizontal Plane in the Formation of Propeller-Shaped Structures. Geotectonics 5, 50–64 (in Russian) [Короновский Н.В., Гогоненков Г.Н., Гончаров М.А., Тимурзиев А.И., Фролова Н.С. Роль сдвига вдоль горизонтальной плоскости при формировании структур «пропеллерного» типа // Геотектоника. 2009. № 5. С. 50–64].

8. Lermontova A.S., Rebetsky Yu.L., 2012. Research of Interactions between Shear Fractures on the Basis of Approximate Analytical Elastic Solutions. Geodynamics & Tectonophysics 3 (3), 239–274 (in Russian) [Лермонтова А.С., Ребецкий Ю.Л. Исследование взаимодействия трещин сдвига на основе приближенного аналитического решения задачи теории упругости // Геодинамика и тектонофизика. 2012. Т. 3. № 3. С. 239–274]. https://doi.org/10.5800/GT-2012-3-3-0073.

9. Mikhailova A.V., 2007. Geodynamic Characteristics of Structures Formed in the Layer above Active Faults in the Basement. In: Geophysics of the XXI Century: The Year of 2006. Proceedings of the Eighth Geophysical Readings Named after V.V. Fedynsky (March 02–04, 2006). GERS, Tver, p. 111–118 (in Russian) [Михайлова А.В. Геодинамические характеристики структур, образовавшихся в слое над активными разломами фундамента // Геофизика XXI столетия: 2006 год. Сборник трудов Восьмых геофизических чтений им. В.В. Федынского (2–4 марта, 2006 г.). Тверь: ГЕРС, 2007. С. 111–118].

10. Naylor M.A., Mandl G., Sijpesteijn C.H.K., 1986. Fault Geometries in Basement-Induced Wrench Faulting under Different Initial Stress States. Journal of Structural Geology 8 (7), 737–752. https://doi.org/10.1016/0191-8141(86)90022-2.

11. Rebetsky Yu.L., Mikhailova A.V., Sim L.A., 2008. Fracture Structures at the Depths of Shear Zones. Tectonophysical Modeling Results. In: Problems of Tectonophysics. To the 40th Anniversary of M.V. Gzovsky Laboratory of Tectonophysics, IPE RAS. IPE RAS Publishing House, Moscow, p. 103–140 (in Russian) [Ребецкий Ю.Л., Михайлова А.В., Сим Л.А. Структуры разрушения в глубине зон сдвигания. Результаты тектонофизического моделирования // Проблемы тектонофизики: К сорокалетию создания М.В. Гзовским лаборатории тектонофизики в ИФЗ РАН. М.: Изд-во ИФЗ РАН, 2008. С. 103–140].

12. Seminsky K.Zh., 2003. Internal Structure of Continental Fault Zones. Tectonophysical Aspect. GEO, Novosibirsk, 244 p. (in Russian) [Семинский К.Ж. Внутренняя структура континентальных разломных зон. Тектонофизический аспект. Новосибирск: ГЕО, 2003. 244 с.].

13. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Buddo V.Yu., Lobatskaya R.M., Adamovich A.N., Truskov V.A., Babichev A.A., 1991. Faulting in the Lithosphere. Strike-Slip Zones. Nauka, Novosibirsk, 261 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере. Зоны сдвига. Новосибирск: Наука, 1991. 262 с.].

14. Stefanov Y.P., Bakeev R.A., 2015. Formation of Flower Structures in a Geological Layer at a Strike-Slip Displacement in the Basement. Izvestiya. Physics of the Solid Earth 51 (4), 535–547. https://doi.org/10.1134/S1069351315040114.

15. Stoyanov S.S., 1977. Mechanism of Formation of Fault Zones. Nedra, Moscow, 144 p. (in Russian) [Стоянов С.С. Механизм формирования разрывных зон. М.: Недра, 1977. 144 с.].

16. Tchalenko J.S., 1968. The Evolution of Kink-Bands and the Development of Compression Textures in Sheared Clays. Tectonophysics 6 (2), 159–174. https://doi.org/10.1016/0040-1951(68)90017-6.

17. Tchalenko J.S., 1970. Similarities between Shear Zones of Different Magnitudes. Geological Society of America Bulletin 81 (6), 1625–1640. https://doi.org/10.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2.


Review

For citations:


Lermontova A.S. STRESS FIELD IN A SHEAR ZONE, AND FORMATION OF THE MAIN FAULT. Geodynamics & Tectonophysics. 2021;12(3):499-507. (In Russ.) https://doi.org/10.5800/GT-2021-12-3-0536

Views: 613


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)