Preview

Geodynamics & Tectonophysics

Advanced search

MODEL OF DECOMPRESSION MELTING MECHANISM IN CONVECTIVE-UNSTABLE THERMAL LITHOSPHERE (FIRST APPROXIMATION)

https://doi.org/10.5800/GT-2021-12-3-0535

Abstract

We propose a model of decompression melting, separation, migration and freezing of the melt in the upper mantle during the convective instability process. The model takes into account differences between phase diagrams of the melt and the matrix and the resultant features of the melt’s behavior, without calculating reaction rates in a multicomponent medium. It is constructed under an explicit concept of the local thermodynamic equilibrium of the existing phases. Therefore, we further develop the first approximation of the descriptions of convection in the upper mantle and the formation of large epicontinental sedimentary basins, which have been presented in earlier publications. Our computational experiments show that primary melting of the upper mantle’s fertile material occurs intensively in a narrow frontal part of the ascending hot material flow. Then, the depleted and partially melted material rises farther upward from the front of primary melting. Melting of the depleted material continues at lower pressures in a rather wide range of depths (120–77 km). Further, the migrating melt is supplied by two sources, i.e. a deep-seated one, wherein the fertile material melts, and the medium-depth one, wherein melting of the depleted material takes place. Once the temperature and pressure rates of the melt reach the values corresponding to those of its solidus, a narrow freezing front is formed. Its width is almost similar to the primary melting front. As the ascending convective flow develops, the freezing front shifts upward. As a result, a quite thick (around 40–50 km) basalt-saturated layer occurs above the freezing front. An important observation in our modeling experiments is that, despite a considerably large total volume of the melted material, a one-time melt content in the mantle does not exceed tenths of one percent, when we consider averaging to volumes with a linear size of about 1.0 km. The basalt melt extraction depletes iron in the mantle and significantly reduces the mantle density. Considering the calculated basalt-depletion values for the matrix at 0.1–0.2, the density deficit doubles in comparison to the thermal expansion of the material. Logically, both the Rayleigh number and the intensity of convection also double (and this is confirmed by the calculations), which means that convection is enhanced after the melting start.

Testing of the model shows that it gives a reasonable picture that is consistent with the available geological and geophysical data on the structure of the lithosphere underneath the currently developing epicontinental sedimentary basins. Furthermore, within the limits of its detail, this model is consistent with the results of modeling experiments focused on melting and melting dynamics, which are based on calculations of reactions between components of the mantle material.

About the Authors

B. V. Lunev
Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



V. V. Lapkovsky
Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



References

1. Ablesimov N.E., Zemtsov A.N., 2010. Relaxation Effects in Non-Equilibrium Condense Systems. In: Basalts: from Eruption up to Fiber. Institute of Tectonics and Geophysics FB RAS, Moscow, 400 p. (in Russian) [Аблесимов Н.Е., Земцов А.Н. Релаксационные эффекты в неравновесных конденсированных системах // Базальты: от извержения до волокна. М.: ИТиГ ДВО РАН, 2010. 400 с.].

2. Ablesimov N.E., Lipatov V.G., Taltykin Yu.V., Berdnikov N.V., 1988. The Role of Volatiles in Generation of Deep Geophysical Anomalies. Journal of Physics of the Earth 36 (2), S191–S196. https://doi.org/10.4294/jpe1952.36.Proceeding2_S191.

3. Batanova V.G., Savelieva G.N., 2009. Melt Migration in the Mantle beneath Spreading Zones and Formation of Replacive Dunites: A Review. Russian Geology and Geophysics 50 (9), 763–778. https://doi.org/10.1016/j.rgg.2009.08.008.

4. Blokhin A.M., Dorovsky V.N., 1994. Problems of Mathematical Modeling in the Theory of Multi-Velocity Continuum. United Institute of Geology, Geophysics and Mineralogy SB RAS, Institute of Mathematics, Novosibirsk, 183 p. (in Russian) [Блохин А.М., Доровский В.Н. Проблемы математического моделирования в теории многоскоростного континуума. Новосибирск: ОИГГМ СО РАН, Институт математики, 1994. 183 с.].

5. Gorbachev N.S., Kostyuk A.V., Sultanov D.M., 2017. Phase Relations of Fluid-Containing Peridotite at Undercritical and Supercritical Pressures (Experimental Data). In: Physical-Chemical and Petrophysical Researches in the Earth’s Sciences. Proceedings of the Eighteenth International Conference (Moscow, October 2–4, Borok, October 6, 2017). Moscow: IGEM RAS, p. 66–69 (in Russian) [Горбачев Н.С., Костюк А.В., Султанов Д.М. Фазовые соотношения флюидсодержащего перидотита при докритических и сверхкритических давлениях (по экспериментальным данным) // Физико-химические и петрофизические исследования в науках о Земле: Материалы Восемнадцатой международной конференции (Москва, 2–4, Борок, 6 октября 2017 г.). М.: ИГЕМ РАН, 2017. С. 66–69].

6. Kelemen P., Hirth G., Shimizu N., Spiegelman M., Dick H., 1997. A Review of Melt Migration Processes in the Adiabatically Upwelling Mantle beneath Oceanic Spreading Ridges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 355, 283–318. https://doi.org/10.1098/rsta.1997.0010.

7. Keller T., Katz R.F., 2016. The Role of Volatiles in Reactive Melt Transport in the Asthenosphere. Journal of Petrology 57 (6), 1073–1108. https://doi.org/10.1093/petrology/egw030.

8. Keller T., Katz R.F., Hirschmann M.M., 2017. Volatiles beneath Mid-Ocean Ridges: Deep Melting, Channelised Transport, Focusing, and Metasomatism. Earth and Planetary Science Letters 464, 55–68. https://doi.org/10.1016/j.epsl.2017.02.006.

9. Keller T., Suckale J., 2019. A Continuum Model of Multi-Phase Reactive Transport in Igneous Systems. Geophysical Journal International 219 (1), 185–222. https://doi.org/10.1093/gji/ggz287.

10. Lichtenberg T., Keller T., Katz R.F., Golabek G.J., Gerya T.V., 2019. Magma Ascent in Planetesimals: Control by Grain Size. Earth and Planetary Science Letters 507, 154–165. https://doi.org/10.1016/j.epsl.2018.11.034.

11. Litasov K.D., 2011. Physicochemical Conditions for Melting in the Earth’s Mantle Containing a C–O–H Fluid (from Experimental Data). Russian Geology and Geophysics 52 (5), 475–492. https://doi.org/10.1016/j.rgg.2011.04.001.

12. Lunev B.V., Lapkovsky V.V., 2018. The First-Approximation Model Showing the Occurrence of Epicontinental Sedimentary Basins Due to Convective Instability of the Thermal Lithosphere. Geodynamics & Tectonophysics 9 (4), 1363–1380 (in Russian) [Лунёв Б.В., Лапковский В.В. Модель первого приближения формирования эпиконтинентальных осадочных бассейнов вследствие конвективной неустойчивости термической литосферы // Геодинамика и тектонофизика. 2018. Т. 9. № 4. С. 1363–1380]. https://doi.org/10.5800/GT-2018-9-4-0400.

13. McKenzie D., 1984. The Generation and Compaction of Partially Molten Rock. Journal of Petrology 25 (3). 713–765. https://doi.org/10.1093/petrology/25.3.713.

14. Perepechko Yu.V., Sharapov V.N., 2014. Conditions of Appearance of the Asthenospheric Layer under Upper Mantle Convection. Doklady Earth Sciences 457, 901–904. https://doi.org/10.1134/S1028334X14070241.

15. Polyansky O.P., Babichev A.V., Reverdatto V.V., Korobeynikov S.N., 2012. Formation and Upwelling of Mantle Diapirs through the Cratonic Lithosphere: Numerical Thermomechanical Modeling. Petrology 20, 120–137. https://doi.org/10.1134/S086959111202004X.

16. Polyansky O.P., Korobeinikov S.N., Babichev A.V., Reverdatto V.V., Sverdlova V.G., 2014. Numerical Modeling of Mantle Diapirism as a Cause of Intracontinental Rifting. Izvestiya, Physics of the Solid Earth 50, 839–852. https://doi.org/10.1134/S1069351314060056.

17. Polyansky O.P., Prokopiev A.V., Koroleva O.V., Tomshin M.D., Reverdatto V.V., Babichev A.V., Sverdlova V.G., Vasiliev D.A., 2018. The Nature of the Heat Source of Mafic Magmatism during the Formation of the Vilyui Rift Based on the Ages of Dike Swarms and Results of Numerical Modeling. Russian Geology and Geophysics 59 (10), 1217–1236. https://doi.org/10.1016/j.rgg.2018.09.003.

18. Polyansky O.P., Prokopiev A.V., Koroleva O.V., Tomshin M.D., Reverdatto V.V., Selyatitsky A.Yu., Travin A.V., Vasiliev D.A., 2017. Temporal Correlation between Dyke Swarms and Crustal Extension in the Middle Palaeozoic Vilyui Rift Basin, Siberian Platform. Lithos 282–283, 45–64. https://doi.org/10.1016/j.lithos.2017.02.020.

19. Polyansky O.P., Reverdatto V.V., Babichev A.V., Sverdlova V.G., 2016. The Mechanism of Magma Ascent through the Solid Lithosphere and Relation between Mantle and Crustal Diapirism: Numerical Modeling and Natural Examples. Russian Geology and Geophysics 57 (6), 843–857. https://doi.org/10.1016/j.rgg.2016.05.002.

20. Rudge J.F., Bercovici D., Spiegelman M., 2011. Disequilibrium Melting of a Two Phase Multicomponent Mantle. Geophysical Journal International 184 (2), 699–718. https://doi.org/10.1111/j.1365-246X.2010.04870.x.

21. Saxena S.K., Eriksson A.G., 1985. Anhydrous Phase Equilibria in Earth’s Upper Mantle. Journal of Petrology 26 (2), 378–390. https://doi.org/10.1093/petrology/26.2.378.

22. Schmeling H., 2000. Partial Melting and Melt Generation in a Convecting Mantle. In: N. Bagdassarov, D. Laporte, A.B. Thompson (Eds). Petrology and Structural Geology. Vol. 11. Springer, Dordrecht, p. 114–178. https://doi.org/10.1007/978-94-011-4016-4_5.

23. Schmeling H., 2006. A Model of Episodic Melt Extraction for Plumes. Journal of Geophysical Research: Solid Earth 111 (B3). https://doi.org/10.1029/2004JB003423.

24. Schmeling H., 2010. Dynamic Models of Continental Rifting with Melt Generation. Tectonophysics 480 (1–4), 33–47. https://doi.org/10.1016/j.tecto.2009.09.005.

25. Sharapov V.N., Perepechko Yu.V., Mazurov M.P., 2006. Mantle-Crust Magmatic-Fluid Systems in Spreading Zones. Russian Geology and Geophysics 47 (12), 1326–1344.

26. Sobolev S.V., Babeyko A.Yu., 1994. Modeling of Mineralogical Composition, Density and Elastic Wave Velocities in Anhydrous Magmatic Rocks. Surveys in Geophysics 15, 515–544. https://doi.org/10.1007/BF00690173.

27. Sobolev A.V., Krivolutskaya N.A., Kuzmin D.V., 2009. Petrology of the Parental Melts and Mantle Sources of Siberian Trap Magmatism. Petrology 17, 253. https://doi.org/10.1134/s0869591109030047.

28. Sparks D.W., Parmantier E.M., 1993. The Structure of Three-Dimentional Convection beneath Oceanic Spreading Centres. Geophysical Journal International 112 (1), 81–91. https://doi.org/10.1111/j.1365-246X.1993.tb01438.x.

29. Sparks D.W., Parmantier Е.М., 1994. Chapter 4 The Generation and Migration of Partial Melt beneath Oceanic Spreading Centers. International Geophysics 57, 55–76. https://doi.org/10.1016/S0074-6142(09)60092-9.

30. Turner A.J., Katz R.F., Behn M.D., Keller T., 2017. Magmatic Focusing to Mid-Ocean Ridges: The Role of Grain-Size Variability and Non-Newtonian Viscosity. Geochemistry Geophysics Geosystems 18 (12), 4342–4355. https://doi.org/10.1002/2017GC007048.

31. Zhuse T.P., 1981. The Role of Compressed Gases as Dissolvents. Nedra, Moscow, 161 p. (in Russian) [Жузе Т.П. Роль сжатых газов как растворителей. М.: Недра, 1981. 161 с.].


Review

For citations:


Lunev B.V., Lapkovsky V.V. MODEL OF DECOMPRESSION MELTING MECHANISM IN CONVECTIVE-UNSTABLE THERMAL LITHOSPHERE (FIRST APPROXIMATION). Geodynamics & Tectonophysics. 2021;12(3):485-498. (In Russ.) https://doi.org/10.5800/GT-2021-12-3-0535

Views: 609


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)