Preview

Геодинамика и тектонофизика

Расширенный поиск

ЦИРКОНЫ ИЗ ПОРОД МУРЗИНСКО-АДУЙСКОГО МЕТАМОРФИЧЕСКОГО КОМПЛЕКСА (СРЕДНИЙ УРАЛ): ГЕОХИМИЯ, ТЕРМОМЕТРИЯ, ПОЛИХРОННОСТЬ, ГЕНЕТИЧЕСКИЕ СЛЕДСТВИЯ

https://doi.org/10.5800/GT-2021-12-2-0527

Полный текст:

Аннотация

Изучение процесса преобразования океанической коры в континентальную, идущего в орогенных поясах, – важный вопрос петрологии. Мурзинско-адуйский метаморфический комплекс, расположенный в палеоконтинентальном секторе Урала, является одним из ключевых объектов, где можно проследить этапы метаморфизма и сопряженного с ним анатектического гранитообразования. Цель работы – на основе анализа микроэлементного состава цирконов из гнейсов и жильных гранитов данного комплекса установить их генезис, источники, условия кристаллизации, уточнить этапность гранитообразования. Состав цирконов изучался методом LA-ICP-MS, температуры рассчитаны по содержанию титана в цирконе. Выделены три геохимических типа цирконов, различающихся соотношением легких и тяжелых РЗЭ, U, Th, Ti, Y, величинами Zr/Hf-отношения и аномалий Се и Eu, что предполагает разницу в условиях кристаллизации. Цирконы I типа содержат минимальное количество LREE, имеют ясные негативные аномалии Cе и Eu, обладают признаками магматического генезиса. Температура их кристаллизации составляет 629–782 °С. Цирконы II типа имеют более высокие содержания Ti, La, LREE, слабую аномалию Ce. Предполагается их кристаллизация из высокофлюидизированных расплавов или растворов. Цирконы III типа обладают слабой позитивной аномалией Eu, высокой суммой РЗЭ, низким Th/U-отношением и могли образоваться из особого флюидонасыщенного расплава с высокой концентрацией Eu. Древние реликтовые цирконы с широким разбросом возрастов (от 2300 до 330 млн лет) фиксируются в гнейсах и гранитах, имеют признаки магматического генезиса, соответствуя I и II типу. Они могли быть заимствованы из источников гранитоидного состава, имеющих разную основность или в разной степени преобразованных. Особенности строения мурзинско-адуйского комплекса, петрогеохимические параметры пород, геохимия цирконов указывают на сиалическую природу вещества, слагающего данный сегмент земной коры. Главные этапы метаморфизма и/или гранитообразования, которые нашли выражение в смене морфотипов и составов цирконов, отвечают 1639, 380–370, 330 и 276–246 млн лет, т.е. процесс континентализации был длительным, сложным и привел к повышенной мощности сиалической коры.

Об авторах

Г. Ю. Шардакова
Институт геологии и геохимии им. А.Н. Заварицкого УрО РАН
Россия

620016, Екатеринбург, ул. Академика Вонсовского, 15



С. В. Прибавкин
Институт геологии и геохимии им. А.Н. Заварицкого УрО РАН
Россия

620016, Екатеринбург, ул. Академика Вонсовского, 15



А. А. Краснобаев
Институт геологии и геохимии им. А.Н. Заварицкого УрО РАН
Россия

620016, Екатеринбург, ул. Академика Вонсовского, 15



Н. С. Бородина
Институт геологии и геохимии им. А.Н. Заварицкого УрО РАН
Россия

620016, Екатеринбург, ул. Академика Вонсовского, 15



М. В. Червяковская
Институт геологии и геохимии им. А.Н. Заварицкого УрО РАН
Россия

620016, Екатеринбург, ул. Академика Вонсовского, 15



Список литературы

1. Alekseev A.A., Kovalev S.G., Timofeeva E.A., 2009. Beloretsk Metamorphic Complex. IG USC RAS Publishing House, Ufa, 208 p. (in Russian) [Алексеев А.А., Ковалев С.Г., Тимофеева Е.А. Белорецкий метаморфический комплекс. Уфа: Изд-во ИГ УНЦ РАН, 2009. 208 с.].

2. Arzamastsev A.A., Arzamastseva L.V., Travin A.V., Belyatsky B.V., Shamatrina A.M., Antonov A.V., Larionov A.N., Rodionov N.V., Sergeev S.A., 2007. Duration of Formation of Magmatic System of Polyphase Paleozoic Alkaline Complexes of the Central Kola: U-Pb, Rb-Sr, Ar-Ar Data. Doklady Earth Sciences 413, 432–436. https://doi.org/10.1134/S1028334X07030257.

3. Balashov Yu.A., Skublov S.G., 2011. Contrasting Geochemistry of Magmatic and Secondary Zircons. Geochemistry International 49 (6), 594–604. https://doi.org/10.1134/S0016702911040033.

4. Bea F., Montero P., Stroh A., Baasner J., 1996. Microanalysis of Minerals by an Excimer UV-LA-ICP-MS System. Chemical Geology 133 (1–4), 145–156. https://doi.org/10.1016/S0009-2541(96)00073-3.

5. Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology 143, 602–622. https://doi.org/10.1007/s00410-002-0364-7.

6. Bolhar R., Weaver S.D., Palin J.M., Coley J., Paterson L.A., 2008. Systematics of Zircon Crystallisation in the Cretaceous Separation Point Suite, New Zealand, Using U/Pb Isotopes, REE and Ti Geothermometry. Contributions to Mineralogy and Petrology 156, 133–160. https://doi.org/10.1007/s00410-007-0278-5.

7. Ferry J.M., Watson E.B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti‐in‐Zircon and Zr‐in‐Rutile Thermometers. Contributions to Mineralogy and Petrology 154, 429–437. https://doi.org/10.1007/s00410-007-0201-0.

8. Fershtater G.B., 2013. Paleozoic Intrusive Magmatism of the Middle and South Urals. IGG UB RAS Publishing House, Ekaterinburg, 365 p. (in Russian) [Ферштатер Г.Б. Палеозойский интрузивный магматизм Среднего и Южного Урала. Екатеринбург: Изд-во ИГГ УрО РАН, 2013. 365 с.].

9. Fershtater G.B., Borodina N.S., 2018. Murzinka Massive at the Middle Urals as an Example of the Interformational Granite Pluton: Magmatic Sources, Geochemical Zonality, Peculiarities of Formation. Lithosphere 5, 672–691 (in Russian) [Ферштатер Г.Б., Бородина Н.С. Мурзинский массив на Среднем Урале как пример межформационного гранитного плутона: магматические источники, геохимическая зональность, особенности формирования // Литосфера. 2018. № 5. С. 672–691]. https://doi.org/10.24930/1681-9004-2018-18-5-672-691.

10. Fershtater G.B., Borodina N.S., Bea F., Montero P., 2018. Model of Mantle-Crust Interaction and Magma Generation in the Suprasubduction Orogen (Paleozoic of the Urals). Lithosphere 2, 177–207 (in Russian) [Ферштатер Г.Б., Бородина Н.С., Беа Ф., Монтеро П. Модель мантийно-корового взаимодействия и сопряженного магматизма в надсубдукционном орогене (палеозой Урала) // Литосфера. 2018. № 2. С.177–207]. https://doi.org/10.24930/1681-9004-2018-18-2-177-207.

11. Fershtater G.B., Krasnobaev A.A., Montero P., Bea F., Borodina N.S., Vishnyakova M.D., Soloshenko N.G., Streletskaya M.V., 2019. Age and Isotope-Geochemical Features of the Murzinka–Adui Metamorphic Complex in Connection with the Problem of Formation of the Murzinka Interformational Granite Pluton. Russian Geology and Geophysics 60 (3), 287–308. https://doi.org/10.15372/RGG2019039.

12. Fersman A.E., 1960. Selected Papers. Vol. VI. Publishing House of the USSR Academy of Science, Moscow, 743 p. (in Russian) [Ферсман А.Е. Избранные труды. М.: Изд-во АН СССР, 1960. Т. VI. 743 с.].

13. Friberg M., Petrov G.A., 1988. Structure of the Middle Urals, East of the Main Uralian Fault. Geological Journal 33 (1), 37–48. https://doi.org/10.1002/(SICI)1099-1034(199801/03)33:1%3C37::AID-GJ758%3E3.0.CO;2-5.

14. Fu B., Mernagh T.P., Kita N.T., Kemp A.I.S., Valley J.W., 2009. Distinguishing Magmatic Zircon from Hydrothermal Zircon: A Case Study from the Gidginbung High-Sulphidation Au–Ag–(Cu) Deposit, SE Australia. Chemical Geology 259 (3–4), 131–142. https://doi.org/10.1016/j.chemgeo.2008.10.035.

15. Gagnevin D., Daly J.S., Kranz A., 2010. Zircon Texture and Chemical Composition as a Guide to Magmatic Processes and Mixing in a Granitic Environment and Coeval Volcanic System. Contributions to Mineralogy and Petrology 159, 579–596. https://doi.org/10.1007/s00410-009-0443-0.

16. Gerdes A., Montero P., Bea F., Fershtater G., Borodina N., Osipova T., Shardakova G., 2002. Peraluminous Granites Frequently with Mantle-Like Isotope Compositions: The Continental-Type Murzinka and Dzhabyk Batholith of the Eastern Urals. International Journal of Earth Science 91, 3–19. https://doi.org/10.1007/s005310100195.

17. Grimes C.B., John B.E., Kelemen P.B., Mazdab F.K., Wooden J.L., Cheadle M.J., Hanghoj K., Schwartz J.J., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology 35 (7), 643–646. https://doi.org/10.1130/G23603A.1.

18. Harrison T.M., Schmitt A.K., 2007. High Sensitivity Mapping of Ti Distributions in Hadean Zircons. Earth and Planetary Science Letters 261 (1–2), 9–19. https://doi.org/10.1016/j.epsl.2007.05.016.

19. Hetzel R., Romer R.L., 1999. U-Pb Dating of the Verkhniy Ufaley Intrusion, Middle Urals, Russia: A Minimum Age for Subduction and Amphibolite Facies, Overprint of the East European Continental Margine. Geological Magazine 136 (5), 593–597. https://doi.org/10.1017/S0016756899002976.

20. Hoskin P.W.O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta 69 (3), 637–648. https://doi.org/10.1016/j.gca.2004.07.006.

21. Hoskin P.W.O., Ireland T.R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicato. Geology 28 (7), 627–630. https://doi.org/10.1130/0091-7613(2000)28%3C627:REECOZ%3E2.0.CO;2.

22. Hoskin P.W.O., Schaltegger U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry 53 (1), 27–62. https://doi.org/10.2113/0530027.

23. Hu Z.L., Wang X.W., Qin Z.P., Zhang J., Gao Y., Peng H., 2012. Basic Characteristics of Zircon Trace Elements and Their Genetic Significances in Jiama Copper Polymetallic Deposit. Nonferrous Metals (Min. Sect.) 64, 58–63 (in Chinese with English Abstract).

24. Kaulina T.V., 2010. Formation and Metamorphism of Zircon in Polymetamorphic Complexes. KSC RAS Publishing House, Apatity, 144 p. (in Russian) [Каулина Т.В. Образование и преобразование циркона в полиметаморфических комплексах. Апатиты: Изд-во КНЦ РАН, 2010. 144 с.].

25. Kazakov I.I., Storozhenko E.V., Kharitonov I.N. et al., 2016. Report on Work Results for GDP-200 Sheet O-41-XX (Alapaevsk Area) in 2014–2016. Book 1. OJSC UGSE, Ekaterinburg, 297 p. (in Russian) [Казаков И.И., Стороженко Е.В., Харитонов И.Н. и др. Отчет о результатах работ по объекту «ГДП-200 листа O-41-XX (Алапаевская площадь)» за 2014–2016 гг. Екатеринбург: ОАО УГСЭ, 2016. Кн. 1. 297 с.].

26. Keilman G.A., 1974. Migmatite Complexes of Mobile Belts. Nedra, Moscow, 200 p. (in Russian) [Кейльман Г.А. Мигматитовые комплексы подвижных поясов. М.: Недра, 1974. 200 с.].

27. Kirkland C.L., Smithies R.H., Taylor R.J.M., Evans N., McDonald B., 2014. Zircon Th/U Ratios in Magmatic Environs. Lithos 212–215, 397–414. https://doi.org/10.1016/j.lithos.2014.11.021.

28. Koroteev V.A., Necheukhin V.M., Krasnobaev A.A., Volchek E.N., 2018. Terrains of the Main Geodynamical Types in the Structures of Ural-Timan Areal and the Eurasia North-Eastern Segment. Lithosphere 6, 779–796 (in Russian) [Коротеев В.А., Нечеухин В.М., Краснобаев А.А., Волчек Е.Н. Террейны основных геодинамических типов в структурах Урало-Тиманского ареала и Северо-Восточного сегмента Евразии // Литосфера. 2018. № 6. С. 779–796]. https://doi.org/10.24930/1681-9004-2018-18-6-779-796.

29. Korovko A.V., Dvoeglazov D.A., 1986. Geological Position and Internal Structure of the Murzinka Metamorphic Complex. In: Correlation and Mapping of Magmatic and Metamorphic Complexes of the Urals. IGG UB of the USSR Academy of Sciences Publishing House, Sverdlovsk, p. 73–75 (in Russian) [Коровко А.В., Двоеглазов Д.А. Геологическая позиция и внутреннее строение мурзинского метаморфического комплекса // Корреляция и картирование магматических и метаморфических комплексов Урала. Свердловск: Изд-во УрО АН СССР, 1986. С. 73–75].

30. Krasnobaev A.A., 1986. Zircon as an Indicator of Geological Processes. Nauka, Moscow, 152 p. (in Russian) [Краснобаев А.А. Циркон как индикатор геологических процессов. М.: Наука, 1986. 152 с.].

31. Krasnobaev A.A., Bea F., Fershtater G.B., Montero P., 2005. Zircon Geochronology of Murzinka Metamorphic Complex, Central Ural. Doklady Earth Sciences 404 (3), 407–410 (in Russian) [Краснобаев А.А., Беа Ф., Ферштатер Г.Б., Монтеро П. Цирконовая геохронология мурзинского метаморфического комплекса (Средний Урал) // Доклады АН. 2005. Т. 404. № 3. С. 407–410].

32. Krasnobaev A.A., Fershtater G.B., Bea F., Montero P., 2006. Polygenic Zircons of Adui Batholith (Central Ural). Doklady Earth Sciences 410 (2), 244–249 (in Russian) [Краснобаев А.А., Ферштатер Г.Б., Беа Ф., Монтеро П. Полигенные цирконы Адуйского батолита (Средний Урал) // Доклады АН. 2006. Т. 410. № 2. С. 244–249].

33. Kudryashov N.M., Skublov S.G., Kalinin A.A., Lyalina L.M., 2016. Mineralogical and Geochemical Characteristics of Zircon from Diorite Porphyry Dyke in Sergozerskoe Gold Occurrence (the Strel'ninsky Greenstone Belt, Kola Region). Vestnik of MSTU 19 (1/1), 82–88 (in Russian) [Кудряшов Н.М., Скублов С.Г., Калинин А.A., Лялина Л.М. Минералогические и геохимические характеристики циркона из дайки диоритовых порфиров Сергозерского золоторудного проявления (Стрельнинский зеленокаменный пояс, Кольский регион) // Вестник МГТУ. 2016. Т. 19. № 1/1. С. 82–88]. http://dx.doi.org/10.21443/1560-9278-2016-1/1-82-88.

34. Levskii L.K., Skublov S.G., Gembitskaya I.M., 2009. Isotopic-Geochemical Study of Zircons from Metabasites of the Kontokki Dike Complex: Age of Regional Metamorphism in the Kostomuksha Structure. Petrology 17 (7), 669–683. https://doi.org/10.1134/S0869591109070030.

35. Li H., Watanabe K., Yonezu K., 2014. Zircon Morphology, Geochronology and Trace Element Geochemistry of the Granites from the Huangshaping Polymetallic Deposit, South China: Implications for the Magmatic Evolution and Mineralization Processes. Ore Geology Reviews 60, 14–35. https://doi.org/10.1016/j.oregeorev.2013.12.009.

36. Linnen R.L., Keppler H., 2002. Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes. Geochimica et Cosmochimica Acta 66 (18), 3293–3301. https://doi.org/10.1016/S0016-7037(02)00924-9.

37. Montero P., Bea F., Gerdes A., Fershtater G., Zin’kova N., Borodina N., Osipova T., Smirnov V., 2000. Single-Zircon Evaporation Ages and Rb-Sr Dating of Four Major Variscan Batholiths of the Urals: A Perspective on the Timing of Deformation and Granite Generation. Tectonophysics 317 (1–2), 93–108. https://doi.org/10.1016/S0040-1951(99)00270-X.

38. Orogenic Granitoid Magmatism of the Urals, 1994. UB RAS Publishing House, Miass, 250 p. (in Russian) [Орогенный гранитоидный магматизм Урала. Миасс: Изд-во УрО РАН, 1994. 250 с.].

39. Pelleter E., Cheilletz A., Gasquet D., Mouttaqi A., Annich M., Hakour A.E., Deloule E., Feraud G., 2007. Hydrothermal Zircons: A Tool for Ion Microprobe U–Pb Dating of Gold Mineralization (Tamlalt-Menhouhou Gold Deposit – Morocco). Chemical Geology 245 (3–4), 135–161. https://doi.org/10.1016/j.chemgeo.2007.07.026.

40. Petrov G.A., Ronkin Yu.L., Korovko A.V., 2010. New Data on the Age of Magmatic Complexes of the East Ural Megazone in the Middle Urals. In: Magmatism and Metamorphism in the History of the Earth. Abstracts of the XI All-Russia Petrographic Meeting (August 24–26, 2010). Vol. 2. IGG UB RAS Publishing House, Ekaterinburg, p. 125 (in Russian) [Петров Г.А., Ронкин Ю.Л., Коровко А.В. Новые данные о возрасте некоторых магматических комплексов Восточно-Уральской мегазоны на Среднем Урале // Магматизм и метаморфизм в истории Земли: Тезисы докладов XI Всероссийского петрографического совещания (24–26 августа 2010 г.). Екатеринбург: Изд-во ИГГ УрО РАН, 2010. Т. 2. С. 125].

41. Popov V.S., Bogatov V.I., Petrova A.Yu., Belyatsky B.V., 2003. Age and Possible Sources of Granites of the Murzinka-Adui Block, Middle Urals: Rb-Sr and Sm-Nd Isotope Data. Lithosphere 4, 3–18 (in Russian) [Попов В.С., Богатов В.И., Петрова А.Ю., Беляцкий Б.В. Возраст и возможные источники гранитов Мурзинско-Адуйского блока, Средний Урал: Rb-Sr и Sm-Nd изотопные данные // Литосфера. 2003. № 4. С. 3–18].

42. Pystina Y.I., Pystin A.M., 2002. Zircon Chronicle of the Uralian Precambrian. IGG UB RAS Publishing House, Ekaterinburg, 166 p. (in Russian) [Пыстина Ю.И., Пыстин А.М. Цирконовая летопись уральского докембрия. Екатеринбург: Изд-во ИГГ УрО РАН, 2002. 166 с.].

43. Rubatto D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology 184 (1–2), 123–138. https://doi.org/10.1016/S0009-2541(01)00355-2.

44. Rusin A.I., 2004. Metamorphic Complexes of the Urals and the Problem of Metamorphism Evolution in the Complete Cycle of Development of the Lithosphere of Mobile Belts. PhD Thesis (Doctor of Geology and Mineralogy). Ekaterinburg, 507 p. (in Russian) [Русин А.И. Метаморфические комплексы Урала и проблема эволюции метаморфизма в полном цикле развития литосферы подвижных поясов: Дис. … докт. геол.-мин. наук. Екатеринбург, 2004. 507 с.].

45. Shardakova G.Yu., 2016. Granitoids of the Ufaley Block: Geodynamic Environments, Age, Sources, Problems. Lithosphere 4, 133–137 (in Russian) [Шардакова Г.Ю. Гранитоиды Уфалейского блока: геодинамические обстановки, возраст, источники, проблемы // Литосфера. 2016. № 4. С. 133–137].

46. State Geological Map of the Russian Federation, 2015. Middle Urals Series. Scale 1:200 000. Sheet O-41-XXXII (Kamensk Area). Explanatory Note. Moscow Branch of VSEGEI, Moscow, 274 p. (in Russian) [Государственная геологическая карта Российской Федерации. Серия Среднеуральская. Масштаб 1:200 000. Лист О-41-ХХХII (Каменская площадь): Объяснительная записка. М.: МФ ВСЕГЕИ, 2015. 274 с.].

47. Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications 42 (1), 313–345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19.

48. Talantsev A.S., 1988. Chamber Pegmatites of the Urals. Nauka, Moscow, 144 p. (in Russian) [Таланцев А.С. Камерные пегматиты Урала. М.: Наука, 1988. 144 с.]. Wang F.Y., Liu S.A., Li S.G., Yongsheng H., 2013. Contrasting Zircon Hf-O Isotopes and Trace Elements between Ore-Bearing and Ore-Barren Adakitic Rocks in Central-Eastern China: Implications for Genetic Relation to Cu-Au Mineralization. Lithos 156–159, 97–111. https://doi.org/10.1016/j.lithos.2012.10.017.

49. Wang X., Griffin W.L., Chen J., Huang P., Li X., 2011. U and Th Contents and Th/U Ratios of Zircon in Felsic and Mafic Magmatic Rocks: Improved Zircon-Melt Distribution Coefficients. Acta Geologica Sinica 85 (1), 164–174. https://doi.org/10.1111/j.1755-6724.2011.00387.x.

50. Watson E.B., 1979. Zircon Saturation in Felsic Liquids: Experimental Results and Applications to Trace Element Geochemistry. Contributions to Mineralogy and Petrology 70, 407–419. https://doi.org/10.1007/BF00371047.

51. Watson E.B., Wark D.A., Thomas J.B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology 151, 413–433. https://doi.org/10.1007/s00410-006-0068-5.

52. Zhong S., Feng C., Seltmann R., Li D., Qu H., 2018. Can Magmatic Zircon Be Distinguished from Hydrothermal Zircon by Trace Element Composition? The Effect of Mineral Inclusions on Zircon Trace Element Composition. Lithos 314–315, 646–657. https://doi.org/10.1016/j.lithos.2018.06.029.


Для цитирования:


Шардакова Г.Ю., Прибавкин С.В., Краснобаев А.А., Бородина Н.С., Червяковская М.В. ЦИРКОНЫ ИЗ ПОРОД МУРЗИНСКО-АДУЙСКОГО МЕТАМОРФИЧЕСКОГО КОМПЛЕКСА (СРЕДНИЙ УРАЛ): ГЕОХИМИЯ, ТЕРМОМЕТРИЯ, ПОЛИХРОННОСТЬ, ГЕНЕТИЧЕСКИЕ СЛЕДСТВИЯ. Геодинамика и тектонофизика. 2021;12(2):332-349. https://doi.org/10.5800/GT-2021-12-2-0527

For citation:


Shardakova G.Yu., Pribavkin S.V., Krasnobaev A.A., Borodina N.S., Chervyakovskaya M.V. ZIRCONS FROM ROCKS OF THE MURZINKA-ADUI METAMORPHIC COMPLEX: GEOCHEMISTRY, THERMOMETRY, POLYCHRONISM, AND GENETIC CONSEQUENCES. Geodynamics & Tectonophysics. 2021;12(2):332-349. (In Russ.) https://doi.org/10.5800/GT-2021-12-2-0527

Просмотров: 82


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)