AGE AND COMPOSITION OF THE EARLY PALEOZOIC MAGMATIC ASSOCIATIONS AND RELATED RARE-ELEMENT PEGMATITES IN THE SOUTH-EASTERN PART OF THE SANGILEN BLOCK, TUVA-MONGOLIAN MASSIF
https://doi.org/10.5800/GT-2021-12-2-0524
Abstract
The article presents new data on ages (U-Pb zircon dating, SIMS SHRIMP-II) and chemical compositions of rocks from gabbro-granitic and granite-leucogranitic magmatic associations. These rocks preceded the formation of Li-enriched spodumene pegmatites of the Tserigiyngol-Burchin ore cluster (Russian: ЦБРУ), one of the main clusters in the South Sangilen pegmatite belt (SSB) located in the Tuva-Mongolian massif being a part of the Central Asian Fold Belt. We investigated the rocks from the Upper Tserigiyngol, Uchuglyk and Temenchulu plutons, and pegmatites from two neighbouring fields. We distinguish three impulses of granitic magmatism (517±7, 508±7, and 488±6 Ma), which are attributed to different stages of the Early Paleozoic collision orogeny (520-480 Ma). The period when the Li-enriched pegmatites were formed (494±7 Ma) is close to the magmatism impulse at 488±6 Ma. Differences are discovered in compositional and isotopic (Sm-Nd) features of granites dominating at the following stages of collisional orogeny: (1) early collision (517±7 Ma) – I-type granites, eNd(T)=0–1.5, TNd (DM-2st)=1.2–1.1 b.y., and (2) late collision (488±6 Ma) – A-2-type granites, eNd(T)=–3.0…–1.6, TNd (DM-2st)=1.5–1.4 b.y., which are due to different sources. Our study shows that facies transitions are absent between the late-collision granites (488±6 Ma) and the spodumene pegmatites from the Tserigiyngol-Burchin ore cluster (494±7 Ma), although these rocks are close in age. In terms of geochemical features, the spodumene pegmatites from the cluster are strongly different from both the late-collision granites and spodumene pegmatites from other SSB fields, including the large Tastyg lithium deposit. We have analysed the role of interactions between the crustal and mantle materials in the formation of granitoid sources in the Tserigiyngol-Burchin ore cluster, and described their evolution in time and the influence on the pegmatite rare-element specialization.
Keywords
About the Authors
L. G. KuznetsovaRussian Federation
1а Favorsky St, Irkutsk 664033
S. P. Shokalsky
Russian Federation
74 Sredny Ave, Saint Petersburg 199106
S. A. Sergeev
Russian Federation
74 Sredny Ave, Saint Petersburg 199106
S. I. Dril
Russian Federation
1а Favorsky St, Irkutsk 664033
References
1. Afonin V.P., Gunicheva T.N., Piskunova L.F., 1984. X-Ray Fluorescence Chemical Analysis. Novosibirsk, Nauka, 228 p. (in Russian) [Афонин В.П., Гуничева Т.Н., Пискунова Л.Ф. Рентгенофлуоресцентный силикатный анализ. Новосибирск: Наука, 1984. 228 c.].
2. Amosova A.A., Panteeva S.V., Tatarinov V.V., Chubarov V.M., Finkel’shtein A.L., 2015. X-Ray Fluorescence Determination of Major Rock-Forming Elements in 50 and 110 Mg Samples. Analytics and Control 19 (2), 130–138 (in Russian) [Амосова А.А., Пантеева С.В., Татаринов В.В., Чубаров В.М., Финкельштейн А.Л. Рентгенофлуоресцентное определение основных породообразующих элементов из образцов массой 50 и 110 мг // Аналитика и контроль. 2015. Т. 19. № 2. С. 130–138].
3. Barker F., 1979. Chapter 1 – Trondhjeemite: Definition, Environment and Hypotheses of Origin. Developments in Petrology 6, 1–12. https://doi.org/10.1016/B978-0-444-41765-7.50006-X.
4. Bau M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology 123, 323–333.
5. Beskin S.M., Marin Yu.B., Matias V.V., Gavrilova S.P., 1999. Rare-Metal Granites: History of Study, Terminology, Types, And Genetic Approaches. Proceedings of the Russian Mineralogical Society 128 (6), 28–39 (in Russian) [Бескин С.М., Марин Ю.Б., Матиас В.В., Гаврилова С.П. Редкометалльные граниты (история изучения, терминология, типы, генетические подходы) // Записки РМО. 1999. Ч. 128. № 6. С. 28–39].
6. Černý P., Ercit T.S., 2005. The Classification of Granitic Pegmatites Revisited. The Canadian Mineralogist 43 (6), 2005–2026. https://doi.org/10.2113/gscanmin.43.6.2005.
7. Černý P., London D., Novák M., 2012. Granitic Pegmatites as Reflections of Their Sources. Elements 8, 289–294. https://doi.org/10.2113/gselements.8.4.289.
8. Chappell B.W., White A.J.R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh 83 (1–2), 1–26. https://doi.org/10.1017/S0263593300007720.
9. Eby G.N., 1992. Chemical Subdivision of the А-Type Granitoids: Petrogenetic and Tectonic Implications. Geology 20 (7), 641–644. https://doi.org/10.1130/0091-7613(1992)020%3C0641:CSOTAT%3E2.3.CO;2.
10. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033.
11. Geostandards Newletter, 1994. Vol. XVIII (Spec. Iss.). 158 p.
12. Gibsher A.S., Tarleev A.A., Vologdin I.I., Sugorakova A.M., 1987. Summary Profile of the Late Precambrian Terrigenous-Carbonate Complex of West Sangilen (South-Eastern Tuva). In: V.V. Khomentovsky, and V.Yu. Shenfil (Eds), Late Precambrian and Early Paleozoic of Siberia. Siberian Platform and Its Southern Folded Framing. Collection of Scientific Papers. Institute of Geology and Geophysics of the USSR Academy of Sciences, Novosibirsk, p.130–134 (in Russian) [Гибшер А.С., Тарлеев А.А., Вологдин И.И., Сугоракова А.М. Сводный разрез терригенно-карбонатного комплекса позднего докембрия Западного Сангилена (Юго-Восточная Тува) // Поздний докембрий и ранний палеозой Сибири. Сибирская платформа и ее южное складчатое обрамление: Сборник научных трудов / Ред. В.В. Хоментовский, В.Ю Шенфиль. Новосибирск: Изд-во ИГиГ АН СССР, 1987. С. 130–134].
13. Gibsher A.S., Vladimirov A.G., Vladimirov V.G., 2000. The Geodynamic Nature of Early Paleozoic Nappe-Folded Structure of Sangilen Upland (South-Eastern Tuva). Doklady Earth Sciences 370 (4), 489–492 (in Russian) [Гибшер А.С., Владимиров А.Г., Владимиров В.Г. Геодинамическая природа раннепалеозойской покровно-складчатой структуры Сангилена (Юго-Восточная Тува) // Доклады АН. 2000. Т. 370. № 4. С. 489–492].
14. Gonikberg V.E., 1997. Paleotectonic Nature of the North-Western Marginal Part of the Sangilen Massif (Tuva) in Late Pre-Cambrian. Russian Geotectonics 5, 72–85 (in Russian) [Гоникберг В.Е. Палеотектоническая природа северо-западной окраины Сангиленского массива Тувы в позднем докембрии // Геотектоника. 1997. № 5. С. 72–85].
15. Kerrich R., Wyman D.A., 1997. Review of Development in Trace Element Fingerprinting of Geodynamic Setting and Their Implication for Mineral Exploration. Australian Journal of Earth Sciences 44 (4), 465–487. https://doi.org/10.1080/08120099708728327.
16. Kozakov I.K., Kotov A.B., Sal’nikova E.B., Bibikova E.V., Kovach V.P., Kirnozova T.I., Berezhnaya N.G., Lykhin D.A., 1999. Metamorphic Age of Crystalline Complexes of the Tuva–Mongolia Massif: The U–Pb Geochronology of Granitoids. Petrology 7 (2), 177–191.
17. Kozakov I.K., Kotov A.B., Sal’nikova E.B., Kovach V.P., Natman A., Bibikova E.V., Kirnozova T.I., Todt W. et al., 2001. Timing of the Structural Evolution of Metamorphic Rocks in the Tuva–Mongolian Massif. Geotectonics 35 (3), 165–184.
18. Kozakov I.K., Kovach V.P., Yarmolyuk V.V., Kotov A.B., Sal’nikova E.B., Zagornaya N.Yu., 2003. Crust-Forming Processes in the Geologic Development of the Tuva-Mongolia Massif: Sm-Nd Isotopic and Geochemical Data for Granitoids. Petrology 11 (5), 444–463.
19. Kuznetsova L.G., 2014. Geochemical Types of the Early Paleozoic Granitoids of the South Sangilen Belt of Rare-Metal Pegmatites. In: Granites and the Earth’s Evolution: Mantle and Continental Crust. Proceedings of the II International Geological Conference (August 17–20, 2014). SB RAS Publishing House, Novosibirsk, p. 112–114 (in Russian) [Кузнецова Л.Г. Геохимические типы раннепалеозойских гранитоидов Южно-Сангиленского пояса редкометалльных пегматитов // Граниты и эволюция Земли: граниты и континентальная кора: Материалы 2-й международной геологической конференции (17–20 августа 2014 г.). Новосибирск: Изд-во СО РАН, 2014. C. 112–114].
20. Kuznetsova L.G., 2016. Composition of the Early Paleozoic Gabbroids in the Kachik Regional Fault Zone (South Sangilen, Tyva Republic). In: Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent). Proceedings of Scientific Meeting (October 11–14, 2016). Iss. 14. IEC SB RAS, Irkutsk, p. 159–160 (in Russian) [Кузнецова Л.Г. Особенности состава раннепалеозойских габброидов в зоне Качикского регионального разлома (Южный Сангилен, Республика Тыва) // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту): Материалы научного совещания по Программе фундаментальных исследований ОНЗ РАН (11–14 октября 2016 г.). Иркутск: ИЗК СО РАН, 2016. Вып. 14. C. 159–160].
21. Kuznetsova L.G., 2018. Interaction of Crustal and Mantle Materials, Sources of Trace Elements during the Formation and Evolution of Early Paleozoic Li-Rich Granite–Pegmatite Systems in Southeastern Tuva. Russian Geology and Geophysics 59 (12), 1660–1678. https://doi.org/10.1016/j.rgg.2018.12.010.
22. Kuznetsova L.G., Dril’ S.I., Efremov S.V., 2016. Sr–Nd Isotope Parameters of the Sources of Early Paleozoic Plutonic Gabbro-Granite Associations of the South Sangilen Belt of Rare-Metal Pegmatites. In: Proceedings of the XXI Symposium on Geochemistry of Isotopes of Academician A.P. Vinogradov (November 15–17, 2016). Akvarel’, Moscow, p. 105–108 (in Russian) [Кузнецова Л.Г., Дриль С.И., Ефремов С.В. Sr-Nd изотопные характеристики источников раннепалеозойских габбро-гранитных плутонических ассоциаций Южно-Сангиленского пояса редкометалльных пегматитов // Материалы XXI симпозиума по геохимии изотопов им. Академика А.П. Виноградова (15–17 ноября 2016 г). М.: Акварель, 2016. C. 105–108].
23. Kuznetsova L.G., Prokof’ev V.Yu., 2009. Petrogenesis of Extremely Lithium-Rich Spodumene Aplites of the Tastyg Deposit, Sangilen Highland, Tyva Republic. Doklady Earth Sciences 429, 1262–1266. https://doi.org/10.1134/S1028334X09080054.
24. Kuznetsova L.G., Shokalsky S.P., Sergeev S.A., 2011. Rare-Element Pegmatites and Pegmatite-Bearing Granites in the Sangilen Mountain Area: Age, Petrogenesis, and Tectonic Setting. In: Large Igneous Provinces of Asia: Mantle Plumes and Metallogeny. Abstracts of the International Symposium (August 20–28, 2011). Petrographica, Irkutsk, p. 138–141.
25. Kuznetsova L.G., Shokalsky S.P., Sergeev S.A., 2018. Age, Composition, and Geodynamic Environments for the Formation of Granites and Lithium-Rich Rare-Element Pegmatite of Khusuingol Field (Sangilen Highlands). Doklady Earth Sciences 482, 1311–1316. https://doi.org/10.1134/S1028334X18100070.
26. Le Maitre R.W (Ed.), 1989. A Classification of Igneous Rocksand a Glossary of Terms. Blackwell Science Inc, Oxford, 193 p.
27. Ludwig K.R. 2001. SQUID 1.02: A User Manual. Berkeley Geochronology Center Special Publication 2, 19 p.
28. Ludwig K.R., 2003. ISOPLOT/Ex: A Geochronological Toolkit for Microsoft Excel. Version 3.00. Berkeley Geochronology Center Special Publication 4, 74 p.
29. O’Connor J.T., 1965. A Classification for Quartz-Rich Igneous Rock Based on Feldspar Ratios. United States Geological Survey 525 (2), B79–B84.
30. Pearce J.A., 1996. A User’s Guide to Basalt Discrimination Diagrams. In: D.A. Wyman (Ed.), Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada 12, p. 79–113.
31. Pearce J.A., Harris N.B.W., Tindle A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology 25 (4), 956–983. https://doi.org/10.1093/petrology/25.4.956.
32. Rapp R.P., Watson E.B., 1995. Dehydration Melting of Metabasalt at 8–32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology 36, 891–931. https://doi.org/10.1093/petrology/36.4.891.
33. Rickwood P.C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos 22 (4), 247–263. https://doi.org/10.1016/0024-4937(89)90028-5.
34. Rogov N.V., Shenkman Ya.D., 1972. Precambrian Granitoid Complexes in Tuva. In: New Data to Justify Regional Magmatic Schemes of the Altai–Sayan Folded Area. Proceedings of the Third Conference of Magmatism and Metallogeny of the Altai-Sayan Folded Area. SNIIGGiMS Publishing House, Novosibirsk, p. 53–56 (in Russian) [Рогов Н.В., Шенкман Я.Д. О докембрийских гранитоидных комплексах Тувы // Новые данные к обоснованию региональных магматических схем Алтае-Саянской складчатой области: Материалы Третьей конференции по магматизму и металлогении Алтае-Саянской складчатой области. Новосибирск: Изд-во СНИИГИМС, 1972. C. 53–56].
35. Rudnick R.L., Gao S., 2003. Composition of the Continental Crust. In: H.D. Holland, K.K. Turekian (Eds), The Crust. Treatise on Geochemistry 3, p. 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4.
36. Schuth S., Gornyy V.I., Berndt J., Shevchenko S.S., Sergeev S.A., Karpuzov A.F., Mansfeldt T., 2012. Early Proterozoic U-Pb Zircon Ages from Basement Gneiss at the Solovetsky Archipelago, White Sea, Russia. International Journal Geosciences 3, 289–296. http://dx.doi.org/10.4236/ijg.2012.32030.
37. Shenkman Ya.D., 1980. Granitoid Intrusive Complexes in Eastern Tuva. Nedra, Moscow, 133 p. (in Russian) [Шенкман Я.Д. Гранитоидные интрузивные комплексы Восточной Тувы. М.: Недра, 1980. 133 с.].
38. State Geological Map of the Russian Federation, 2010. Altai-Sayan Series. Scale 1:1 000 000. Sheet M-47(Kungurtug). VSEGEI Publishing House, Saint Petersburg (in Russian) [Государственная геологическая карта Российской Федерации. Серия Алтае-Саянская. Масштаб 1:1 000 000. Лист М-47 (Кунгуртуг). СПб.: Изд-во ВСЕГЕИ, 2010].
39. State Geological Map of the USSR, 1981. West Sayan Series. Scale 1:200 000. Sheet M-47-XIII, XIX. Publishing House of the USSR Ministry of Geology, Moscow (in Russian) [Государственная геологическая карта СССР. Серия Западно-Саянская. Масштаб 1:200 000. Лист М-47-XIII, XIX. М.: Изд-во Мингео СССР, 1981].
40. Stewart D.B., 1978. Petrogenesis of Lithium-Rich Pegmatites. American Mineralogist 63 (9–10), 970–980.
41. Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications 42 (1), 313–345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19.
42. Vladimirov A.G., Gibsher A.S., Izokh A.E., Rudnev S.N., 1999. Early Paleozoic Granitoid Batholiths of Central Asia: Abundance, Sources, and Geodynamic Formation Conditions. Doklady Earth Sciences 369А, 1268–1271.
43. Vladimirov A.G., Izokh A.E., Polyakov G.V., Babin G.A., Mekhonoshin A.S., Kruk N.N., Khlestov V.V., Khromykh S.V., Travin A.V., Yudin D.S. et al., 2013. Gabbro-Granite Intrusive Series and Their Indicator Importance for Geodynamic Reconstructions. Petrology 21, 158–180. https://doi.org/10.1134/S0869591113020070.
44. Vladimirov A.G., Kruk N.N., Rudnev S.N., Khromykh S.V., 2003. Geodynamics and Granitoid Magmatism of Collisional Orogens. Russian Geology and Geophysics 44 (12), 1321–1338 (in Russian) [Владимиров А.Г., Крук Н.Н., Руднев С.Н., Хромых С.В. Геодинамика и гранитоидный магматизм коллизионных орогенов // Геология и геофизика. 2003. Т. 44. № 12. С. 1321–1338].
45. Vladimirov V.G., Karmysheva I.V., Yakovlev V.A., Travin A.V., Tsygankov A.A., Burmakina G.N. 2017. Thermochronology of Mingling Dykes in West Sangilen ( South‐East Tuva, Russia): Evidence of the Collapse of the Collisional System in the North‐Western Edge of the Tuva‐Mongolia Massif. Geodynamics & Tectonophysics 8 (2) 283–310 (in Russian) [Владимиров В.Г., Кармышева И.В., Яковлев В.А., Травин А.В., Цыганков А.А., Бурмакина Г.Н. Термохронология минглинг-даек Западного Сангилена (Юго-Восточная Тува): свидетельства развала коллизионной системы на Северо-Западной окраине Тувино-Монгольского массива // Геодинамика и тектонофизика. 2017. T. 8. № 2. С. 283–310]. https://doi.org/10.5800/GT-2017-8-2-0242.
46. Vladimirov V.G., Vladimirov A.G., Gibsher A.S., Travin A.V., Rudnev S.N., Shemelina I.V., Barabash N.V., Savinykh Ya.V., 2005. Model of the Tectonometamorphic Evolution for the Sangilen Block (Southeastern Tuva, Central Asia) as a Reflection of the Early Caledonian Accretion – Collision Tectogenesis. Doklady Earth Sciences 405 (8), 1159–1165.
47. Whalen J.B., Currie K.L., Chappell B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology 95, 407–419. https://doi.org/10.1007/BF00402202.
48. Wilson M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Springer, Dordrecht, 466 p. https://doi.org/10.1007/978-1-4020-6788-4.
49. Yang Y.-H., Chu Zh. Y., Wu F.-Y., Xia L.-W., Yang J.-H., 2010. Precise and Accurate Determination of Sm, Nd Concentrations and Nd Isotopic Compositions in Geological Samples by MC-ICP-MS. Journal of Analytical Atomic Spectrometry 26, 1237–1244. https://doi.org/10.1039/C1JA00001B.
50. Yarmolyuk V.V., Kovalenko V.I., 2003. Deep Geodynamics and Mantle Plumes: Their Role in the Formation of the Central Asian Fold Belt. Petrology 11 (6), 504–531.
51. Zagorsky V.Ye., Shokalsky S.P., Sergeev S.A., 2015. Age, Duration of Formation, and Geotectonic Position of the Zavitaya Lithium Granite–Pegmatite System, Eastern Transbaikalia. Doklady Earth Sciences 460, 16–21. https://doi.org/10.1134/S1028334X15010158.
52. Zagorsky V.Ye., Vladimirov A.G., Makagon V.M., Kuznetsova L.G., Smirnov S.Z., D’yachkov B.A., Annikova I.Yu., Shokalsky S.P., Uvarov A.N., 2014. Large Fields of Spodumene Pegmatites in the Settings of Rifting and Postcollisional Shear–Pull-Apart Dislocations of Continental Lithosphere. Russian Geology and Geophysics 55 (2), 237–251. https://doi.org/10.1016/j.rgg.2014.01.008.
Review
For citations:
Kuznetsova L.G., Shokalsky S.P., Sergeev S.A., Dril S.I. AGE AND COMPOSITION OF THE EARLY PALEOZOIC MAGMATIC ASSOCIATIONS AND RELATED RARE-ELEMENT PEGMATITES IN THE SOUTH-EASTERN PART OF THE SANGILEN BLOCK, TUVA-MONGOLIAN MASSIF. Geodynamics & Tectonophysics. 2021;12(2):261-286. (In Russ.) https://doi.org/10.5800/GT-2021-12-2-0524