SEISMIC PICTURE OF A FAULT ZONE. WHAT CAN BE GAINED FROM THE ANALYSIS OF FINE PATTERNS OF SPATIAL DISTRIBUTION OF WEAK EARTHQUAKE CENTERS?
https://doi.org/10.5800/GT-2010-1-4-0027
Abstract
Association of earthquake hypocenters with fault zones appears more pronounced in cases with more accurately determined positions of the earthquakes. For complex, branched structures of major fault zones, it is assumed that some of the earthquakes occur at feathering fractures of smaller scale.It is thus possible to develop a «seismological» criterion for definition of a zone of dynamic influence of faults, i.e. the zone containing the majority of earthquakes associated with the fault zone under consideration.
In this publication, seismogenic structures of several fault zones located in the San-Andreas fault system are reviewed. Based on the data from a very dense network of digital seismic stations installed in this region and with application of modern data processing methods, differential coordinates of microearthquakes can be determined with errors of about first dozens of meters.It is thus possible to precisely detect boundaries of the areas wherein active deformation processes occur and to reveal spatial patterns of seismic event localization.
In our analyses, data from the most comprehensive seismic catalog were used. The catalogue includes information on events which occurred and were registered in North California in the period between January 1984 and May 2003. In this publication, the seismic data processing results and regularities revealed during the analyses are compared with the data obtained from studies of fault structures, modeling and numerical simulation results. Results of quantitative research of regularities of localization of seismic sources inside fault zones are presented.
It is demonstrated by 3D models that seismic events are localized in the vicinity of an almost plain surface with a nearly constant angle of dip, the majority of events being concentrated at that conventional surface.
Detection of typical scopes of seismicity localization may prove critical for solution of problems of technogenic impact on fault zones for the purpose of partial stress release. The obtained results suggest that the region, wherein active deformation takes place during preparation of medium earthquakes (M≤6.5÷7.0), includes a number of local «strips», each about 100 m in width. The latter size is comparable to a scope of technogenic capabilities of producing an impact on geo-environment. It is hoped that studies of both fine spatial and temporal patterns of seismicity in the vicinity of fault zones will allow to find reliable pinpoints for definition of both place and time for implementation of technogenic impacts.
In our opinion, the implemented study demonstrates the burning need to establish test sites with dense and wellequipped local seismic networks in Russia.
About the Authors
Gevorg G. KocharyanRussian Federation
Doctor of Physics and Mathematics, Professor, Head of Laboratory,
119334, Moscow, Leninsky prospect, 38, Building 1
Svetlana B. Kishkina
Russian Federation
Candidate of Physics and Mathematics, Senior Researcher,
119334, Moscow, Leninsky prospect, 38, Building 1
Aleksey A. Ostapchuk
Russian Federation
Research Engineer,
119334, Moscow, Leninsky prospect, 38, Building 1
References
1. Герасимова Т.И., Кондратьев В.Н., Кочарян Г.Г. Модельные исследования особенностей сдвигового деформирования трещин, содержащих заполнитель // Физико-технические проблемы разработки полезных ископаемых. – 1995. – № 4. – С. 61–68.
2. Кочарян Г.Г., Кулюкин А.М. Исследование закономерностей обрушения подземных выработок в горном массиве блочной структуры при динамическом воздействии. Ч. 2. О механических свойствах межблоковых промежутков // Физико-технические проблемы разработки полезных ископаемых. – 1994. – № 5. – С. 27–37.
3. Кочарян Г.Г., Спивак А.А. Динамика деформирования блочных массивов горных пород. – М.: ИКЦ «Академкнига», 2003. – 423 с.
4. Куксенко В.С. Модель перехода от микро- к макроразрушению твердых тел // Первая Всесоюзная школа-семинар «Физика прочности и пластичности»: Сборник докладов. – Л.: Наука, 1986. – С. 36–41.
5. Разломообразование в литосфере. Зоны сдвига / С.И. Шерман, К.Ж. Семинский, С.А. Борняков, В.Ю. Буддо, Р.М. Лобацкая, А.Н. Адамович, В.А. Трусков, А.А. Бабичев. − Новосибирск: Наука, 1991. – 261 с.
6. Разломообразование в литосфере. Зоны растяжения / С.И. Шерман, К.Ж. Семинский, С.А. Борняков, А.Н. Адамович, Р.М. Лобацкая, С.В. Лысак, К.Г. Леви. − Новосибирск: Наука, 1992. − 262 с.
7. Разломообразование в литосфере. Зоны сжатия / С.И. Шерман, К.Ж. Семинский, С.А. Борняков, А.Н. Адамович, В.Ю. Буддо. − Новосибирск: Наука, 1994. − 263 с.
8. Рац М.В., Чернышев С.Н. Трещиноватость и свойства трещиноватых горных пород. – М.: Недра, 1970. – 160 с.
9. Ружич В.В., Шерман С.И. Оценка связи между длиной и амплитудой разрывных смещений // Динамика земной коры Восточной Сибири. – Новосибирск: Наука. СО, 1978. – С. 52–57.
10. Семинский К.Ж. Внутренняя структура континентальных разломных зон. Тектонофизический аспект. – Новосибирск: Изд-во СО РАН, филиал «Гео», 2003. – 243 с.
11. Семинский К.Ж., Кожевников Н.О., Черемных А.В., Поспеева Е.В., Бобров А.А., Оленченко В.В., Тугарина М.А., Потапов В.В., Бурзунова Ю.П. Межблоковые зоны земной коры: внутренняя структура и геофизические поля // Триггерные эффекты в геосистемах. – М.: ГЕОС, 2010.
12. Шерман С.И. Физические закономерности развития разломов земной коры. – Новосибирск: Наука, 1977. – 103 с.
13. Шерман С.И., Борняков С.А., Буддо В.Ю. Области динамического влияния разломов (результаты моделирования). – Новосибирск, Наука. СО АН СССР, 1983. – 110 с.
14. Beach A., Welbon A.I., Brockback P.J., McCallum J.E. Reservoir damage around faults: outcrop examples from the Suez rift // Petroleum Geosciences. – 1999. – V. 5, № 2. – P. 109–116.
15. Bilham R., Whitehead S. Subsurface creep on the Hayward fault, Fremont, California // Geophysical Research Letters. – 1997. – V. 24. – P. 1307–1310.
16. Blenkinsop T.G. Thickness-displacement relationships for deformation zones: discussion // Journal of Structural Geology. – 1989. – V. 11. – P. 1051–1054.
17. Boettcher M.S., McGarr A., Durrheim R.J., Spottiswoode S., Milev V., Linzer L., Johnston M.J.S., Sell R.W. A broadband, wide dynamic range investigation of earthquakes in deep South African gold mines // Seismological Research Letters. – 2008. – V. 79, № 2. – P. 311
18. Bouchaud E., Lapasset G., Planès J., Naveos S. Statistics of branched fracture surfaces // Physical Review B. – 1993. – V. 48, № 5. – 2917–2928. – doi:10.1103/PhysRevB.48.2917.
19. Bradbury K.K., Barton D.C., Solum J.G., Draper S.D., Evans J.P. Mineralogical and textural analysis of drill cuttings from the San Andreas Fault Observatory at Depth (SAFOD) boreholes: Initial interpretations of fault zone composition and constraints on geologic models // Geosphere. – 2007. – V. 3, № 5. – P. 299–318. – doi:10.1130/GES00076.1.
20. Brodsky E., Ma K.F., Mori J. et al. Rapid Response Drilling: Past, Present, and Future // ICDP/SCEC International Workshop of Rapid Response Fault Drilling. – Tokyo, 2009. – 30 p.
21. Brown S.R., Scholz C.H. Broad bandwidth study of the topography of natural rock surfaces // Journal of Geophysical Research. – 1985. – V. 90, № B14. – P. 12575–12582.
22. Burford R.O., Harsh P.W. Slip on the San Andreas fault in Central California from alinement array surveys // Bulletin of the Seismological Society of America. – 1980. – V. 70. – P. 1233–1261.
23. Chester F.M., Chester J.S. Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California // Tectonophysics. – 1998. – V. 295. – P. 199–221.
24. Chester F.M., Chester J.S., Kirschner D.L., Schulz S.E., Evans J.P. Structure of large displacement strike-slip fault zones in the brittle continental crust // Rheology and Deformation in the Lithosphere at Continental Margins / Eds. G.D. Karner, B. Taylor, N.W. Driscoll, D.L. Kohlstedt. – New York: Columbia University Press, 2004.
25. Chester J.S., Chester F.M., Kronenberg A.K. Fracture surface energy of the Punchbowl fault, San Andreas system // Nature. – 2005. – V. 437. – P. 133–136.
26. Chester F.M., Evans J.P., Biegel R.L. Internal structure and weakening mechanisms of the San Andreas fault // Journal of Geophysical Research. – 1993. – V. 98. – P. 771–786.
27. Cochran E.S., Li Y.-G., Shearer P.M., Barbot S., Fialko Y., Vidale J.E. Seismic and geodetic evidence for extensive, long-lived fault damage zones // Geology. – 2009. – V. 37, № 4. – P. 315–318.
28. Cornet F.H., Doan M.L., Moretti I., Borm G. Drilling through the active Aigion fault: The AIG10 well observatory // Comptes Rendus Geosciences. – 2004. – V. 336, № 4–5. – P. 395–406.
29. Cowie P.A., Scholz C.H. Physical explanation for the displacementlength relationship of faults using a post-yield fracture mechanics model // Journal of Structural Geology. – 1992. – V. 14, № 10. – P. 1133–1148.
30. Elliott D. The energy balance and deformation mechanisms of thrust sheets // Philosophical Transactions of the Royal Society of London. Series A. – 1976. – V. 203. – P. 289–312.
31. Evans J.P. Thickness-displacement relationships for fault zones // Journal of Structural Geology. – 1990. – V. 12. – P. 1061–1065.
32. Evans J.P., Chester F.M. Fluid-rock interaction in faults of the San Andreas system: inferences from San Gabriel fault rock geochemistry and microstructures // Journal of Geophysical Research. – 1995. – V. 100, № B7. – P. 13007–13020.
33. Fossen H., Hesthammer J. Possible absence of small faults in the Gullfaks Field, northern North Sea: implications for downscaling of faults in some porous sandstones // Journal of Structural Geology. – 2000. – V. 22, № 7. – P. 851–863.
34. Heermance R., Shipton Z.K., Evans J.P. Fault structure control on fault slip and ground motion during the 1999 rupture of the Chelungpu fault, Taiwan // Bulletin of the Seismological Society of America. – 2003. – V. 93, № 3. – P. 1034–1050.
35. Hull J. Thickness-displacement relationships for deformation zones // Journal of Structural Geology. – 1988. – V. 10. – P. 431–435.
36. Krantz R.W. Multiple fault sets and three-dimensional strain: theory and application // Journal of Structural Geology. – 1988. – V. 10. – P. 225–237.
37. Levi K.G., Sherman S.I. Applied geodynamic analysis. Musee Royal de L’Afrique Centrale – Tervuren, Belgique annales. Sciences Geologiques. 1995. V. 100. – 133 p.
38. Li Y.G., Vidale J.E., Aki K., Fei X. Depth dependent structure of the Landers fault zone from trapped waves generated by aftershocks // Journal of Geophysical Research. – 2000. – V.105, № B3. – P. 6237–6254. – doi:10.1029/1999JB900449.
39. Li Y.G., Vidale J.E., Cochran E.S. Low-velocity damaged structure of the San Andreas Fault at Parkfield from fault zone trapped waves // Geophysical Research Letters. – 2004. – V. 31. – L12S06. – doi:10.1029/2003GL019044.
40. Lienkaemper J.J., Borchardt G., Lisowski M. Historic creep rate and potential for seismic slip along the Hayward fault, California // Journal of Geophysical Research. – 1991. – V. 96, № B11. – P. 18261–18283.
41. Ma K.F., Tanaka H., Song S.R., Wang C.Y., Hung J.H., Tsai Y.B., Mori J., Song Y.F., Yeh E.C., Soh W., Sone H., Kuo L.W., Wu H.Y. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project // Nature. – 2006. – V. 444. – P. 473–476.
42. Mitchell T.M., Faulkner D.R. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, Northern Chile // Journal of Structural Geology. – 2009. – V. 31. – P. 802–816.
43. Muraoka H., Kamata H. Displacement distribution along minor fault traces // Journal of Structural Geology. – 1983. – V. 5. – P. 483–495.
44. Niu F.L., Silver P.G., Daley T.M., Cheng X., Majer E.L. Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site // Nature. – 2008. – V. 454. – P. 204– 208.
45. Otsuki K. On the relationship between the width of shear zone and the displacement along fault // Journal of the Geological Society of Japan. – 1978. – V. 84. – P. 661–669.
46. Peacock D.C.P., Sanderson D.J. Displacement and segment linkage and relay ramps in normal fault zones // Journal of Structural Geology. – 1991. – V. 13. – P. 721–733.
47. Power W.L., Tullis T.E. Euclidean and fractal models for the description of rock surface-roughness // Journal of Geophysical Research. – 1991. – V. 96. – P. 415–424.
48. Power W.L., Tullis T.E., Brown S.R., Boitnott G.N., Scholz C.H. Roughness of natural fault surfaces // Geophysical Research Letters. – 1987. – V. 14. – P. 29–32.
49. Robertson E.C. Relationship of fault displacement to gouge and breccia thickness // Mining Engineering. – 1983. – V. 35, № 10. – P. 1426–1432.
50. Rubin A.M., Gillard D., Got J.L. Streaks of microearthquakes along creeping faults // Nature. – 1999. – V. 400. – P. 635–641.
51. Sagy A., Brodsky E.E. Geometric and rheological asperities in an exposed fault zone // Journal of Geophysical Research. – 2009. – V. 114. – B02301. – doi:10.1029/2008JB005701.
52. Savage H.M., Brodsky E.E. Collateral damage: Capturing Slip Delocalization in Fracture Profiles // Submitted to Journal of Geophysical Research. 2010.
53. Scholz C.H. Wear and gouge formation in brittle faulting // Geology. – 1987. – V. 15. – P. 493–495.
54. Scholz C.H. The mechanics of earthquakes and faulting. – Cambridge: Cambridge University Press, 2002. – 496 p.
55. Schulz S.E., Evans J.P. Mesoscopic structure of the Punchbowl Fault, Southern California and the geologic and geophysical structure of active strike-slip faults // Journal of Structural Geology. – 2000. – V. 22. – P. 913–930.
56. Segall P., Pollard D.D. Nucleation and growth of strike slip faults in granite // Journal of Geophysical Research. – 1983. – V. 88. – P. 555–568.
57. Shipton Z.K., Cowie P.A. Damage zone and slip-surface evolution over μm to km scales in high-porosity Navajo sandstone, Utah // Journal of Structural Geology. – 2001. – V. 23, № 12. – P. 1825– 1844.
58. Shipton Z.K., Evans J.P., Abercrombie R.E., Brodsky E.E. The missing sinks: slip localization in faults, damage zones, and the seismic energy budget // Earthquakes: Radiated Energy and the Physics of Faulting / Ed. R. Abercrombie. – Washington, DC: AGU, 2006a. – P. 217–222.
59. Shipton Z.K., Soden A.M., Kirkpatrick J.D., Bright A.M., Lunn R.J. How thick is a fault? Fault displacement-thickness scaling revisited // Earthquakes: Radiated Energy and the Physics of Faulting / Ed. R. Abercrombie. – Washington, DC: AGU, 2006b. – P. 193–198.
60. Sibson R.S. Thickness of the seismic slip zone // Bulletin of the Seismological Society of America. – 2003. – V. 93, № 3. – P. 1169–1178.
61. Tanaka H., Fujimoto K., Ohtani T., Ito H. Structural and chemical characterization of shear zones in the freshly activated Nojima fault, Awaji Island, Southwest Japan // Journal of Geophysical Research. – 2001. – V. 106, № B5. – P. 8789–8810.
62. Villemin T., Angelier J., Sunwoo C. Fractal distribution of fault length and offsets: Implications of brittle deformation evaluation – the Lorraine Coal Basin // Fractals in the Earth Sciences / Eds. C. Barton, P. LaPointe. – New York: Plenum Press, 1995. – P. 205–226.
63. Waldhauser F., Richards P.G. Reference Events for Regional Seismic Phases at IMS Stations in China // Bulletin of the Seismological Society of America. – 2004. – V. 94, № 6. – P. 2265–2279.
64. Waldhauser F., Schaff D.P. Large-scale relocation of two decades of Northern California seismicity using cross-correlation and doubledifference methods // Journal of Geophysical Research. – 2008. – Vol. 113. – B08311. – doi:10.1029/2007JB005479.
65. Walsh J.J., Watterson J. Distribution of cumulative displacement and of seismic slip on a single normal fault surface // Journal of Structural Geology. – 1987. – V. 9. – P. 1039–1046.
66. Watterson J. Fault dimensions, displacements and growth // Pure and Applied Geophysics. – 1986. – V. 124. – P. 366–373.
67. Zoback M.D., Hickman S., Ellsworth W.L. In situ fault zone observations from SAFOD, EarthScope Onsite Newsletter, winter. – Available at http://www.earthscope.org/es_doc/onsite/onsite_winter08.pdf).
Review
For citations:
Kocharyan G.G., Kishkina S.B., Ostapchuk A.A. SEISMIC PICTURE OF A FAULT ZONE. WHAT CAN BE GAINED FROM THE ANALYSIS OF FINE PATTERNS OF SPATIAL DISTRIBUTION OF WEAK EARTHQUAKE CENTERS? Geodynamics & Tectonophysics. 2010;1(4):419-440. (In Russ.) https://doi.org/10.5800/GT-2010-1-4-0027