Preview

Геодинамика и тектонофизика

Расширенный поиск

ГЛУБИННОЕ СТРОЕНИЕ САЛАИРСКОГО СКЛАДЧАТО-ПОКРОВНОГО СООРУЖЕНИЯ (СЕВЕРО-ЗАПАД ЦЕНТРАЛЬНО-АЗИАТСКОГО СКЛАДЧАТОГО ПОЯСА) ПО ДАННЫМ МАГНИТОТЕЛЛУРИЧЕСКОГО ЗОНДИРОВАНИЯ

https://doi.org/10.5800/GT-2021-12-1-0517

Полный текст:

Аннотация

Салаирское покровно-складчатое сооружение (Салаирский ороген, Салаир) расположено на северо-западе Алтае-Саянской складчатой области Центрально-Азиатского складчатого пояса и сложено кембрийско-раннеордовикскими вулканогенными и осадочными отложениями островодужного происхождения. В плане Салаир имеет форму подковы, обращенной выпуклой стороной на северо-восток. Во внутренней части этой дугообразной структуры, образованной выходами раннепалеозойского складчатого фундамента, находится Хмелевский прогиб, выполненный терригенными отложениями верхнего девона – нижнего карбона. По системе чешуйчатых надвигов раннепалеозойские отложения Салаира надвинуты на девонско-пермское осадочное выполнение Кузнецкого прогиба. Палеозойские надвиги местами реактивированы на неотектоническом этапе и выражены в современном рельефе тектоногенными уступами. С целью изучения глубинного строения Салаира было пройдено два профиля магнитотеллурического зондирования. Профили имеют длину 175 и 125 км. Они ориентированы вкрест простирания основных структур и пересекают Салаир и западную часть Кузнецкого прогиба. На первом профиле выделяется субгоризонтально залегающая зона повышенной проводимости с удельным электрическим сопротивлением (УЭС) 100–500 Ом⋅м, в диапазоне глубин 8–15 км. В восточной части профиля она полого воздымается в направлении малоглубинной проводящей зоны, соответствующей осадочному выполнению Кузнецкого прогиба. Два высокоомных тела со значениями УЭС 1000–7000 Ом⋅м залегают на глубинах 0–6 км в средней части разреза и разделены субвертикальной проводящей зоной, соответствующей Кинтерепскому надвигу. Главной чертой разреза является субгоризонтальное залегание и уплощенная форма коровых неоднородностей электропроводности. Центральную часть второго профиля занимает высокоомный блок (УЭС более 150000 Ом⋅м), распространяющийся на всю глубину разреза – от поверхности до глубин около 20 км. Восточную часть разреза занимает малоглубинная зона повышенной проводимости, соответствующая осадочному выполнению Кузнецкого прогиба. Земная кора Салаира содержит субгоризонтально залегающую зону повышенной проводимости, типичную для внутриконтинентальных орогенов. Картина распределения аномалий электропроводности подтверждает наличие надвига Салаира на Кузнецкий прогиб. Северная часть Хмелевского прогиба характеризуется высокими значениями УЭС, что может быть объяснено широким развитием невскрытых позднепермских гранитоидных массивов в этой части прогиба. Расположенный в северо-восточной части Хмелевского прогиба Кинтерепский надвиг проявлен в глубинной геоэлектрической структуре земной коры в виде проводящей зоны, что может рассматриваться как свидетельство активности данного разлома.

Об авторах

Ф. И. Жимулев
Институт геологии и минералогии им. В.С. Соболева СО РАН
Россия

630090 Новосибирск, пр-т Академика Коптюга, 3



Е. В. Поспеева
Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН
Россия

630090 Новосибирск, пр-т Академика Коптюга, 3



И. С. Новиков
Институт геологии и минералогии им. В.С. Соболева СО РАН
Россия

630090 Новосибирск, пр-т Академика Коптюга, 3



В. В. Потапов
Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН
Россия

630090 Новосибирск, пр-т Академика Коптюга, 3



Список литературы

1. Avdeyev A.P., Cherepovsky V.F., Sharov G.N., Yuzvitsky A.Z. (Eds), 2003. Coal Base of Russia. Coal Basins and Deposits of Western Siberia (Kuznetsky, Gorlovsky, West Siberian Basins; Deposits of the Altai Region and the Republic of Altai). Vol. 2. Geoinformtsentr, Moscow, 604 p. (in Russian) [Угольная база России. Угольные бассейны и месторождения Западной Сибири (Кузнецкий, Горловский, Западно-Сибирский бассейны, месторождения Алтайского края и Республики Алтай) / Ред. А.П. Авдеев, В.Ф. Череповский, Г.Н. Шаров, А.З. Юзвицкий. М.: Геоинформцентр, 2003. Т. 2. 604 с.].

2. Bahr K., 1988. Interpretation of Magnetotelluric Impedance Tensor: Regional Induction and Local Telluric Distortion. Journal of Geophysics 62 (1), 119–127.

3. Batalev V.Y., Bataleva E.A., 2013. The State of the Lithosphere in the Junction Zone of Tarim and Tien Shan According to the Petrological Interpretation of the Magnetotelluric Data. Izvestiya, Physics of the Solid Earth 49, 384–391. https://doi.org/10.1134/S1069351313030026.

4. Bataleva E.A., Batalev V.Y., Rybin A.K., 2013. On the Question of the Interrelation Between Variations in Crustal Conductivity and Geodynamical Processes. Izvestiya, Physics of the Solid Earth 49, 402–410. https://doi.org/10.1134/S1069351313030038.

5. Bataleva E.A., Mukhamadeeva V.A., 2018. Complex Electromagnetic Monitoring of Geodynamic Processes in the Northern Tien Shan (Bishkek Geodynamic Test Area). Geodynamics & Tectonophysics 9 (2), 461–487 (in Russian) [Баталева Е.А., Мухамадеева В.А. Комплексный электромагнитный мониторинг геодинамических процессов Северного Тянь‐Шаня (Бишкекский геодинамический полигон) // Геодинамика и тектонофизика. 2018. Т. 9. № 2. С. 461–487]. https://doi.org/10.5800/GT-2018-9-2-0356.

6. Bataleva E.A., Przhiyalgovskii E.S., Batalev V.Yu., Lavrushina E.V., Leonov M.G., Matyukov V.E., Rybin A.K., 2017. New Data on the Deep Structure of the South Kochkor Zone of Concentrated Deformation. Doklady Earth Sciences 475, 930–934. https://doi.org/10.1134/S1028334X1708013X.

7. Bataleva E.A., Rybin A.K., Batalev V.Yu., Safronov I.V., 2005. Use of Magnetotelluric Sounding to Study Tectonic Disturbances in the Rock Masses. Journal of Mining Science 41, 225–231. https://doi.org/10.1007/s10913-005-0087-z.

8. Berdichevsky M.N., Dmitriev V.I., 2009. Models and Methods of Magnetotellurics. Nauchny Mir, Moscow, 679 p. (in Russian) [Бердичевcкий М.Н., Дмитриев В.И. Модели и методы магнитотеллурики. М.: Научный мир, 2009. 679 с.].

9. Berdichevsky M.N., Dmitriev V.I., Novikov D.B., Pastutsan V.V., 1997. Analysis and Interpretation of Magnetotelluric Data. Dialogue-MGU, Moscow, 161 p. (in Russian) [Бердичевский М.Н., Дмитриев В.И., Новиков Д.Б., Пастуцан В.В. Анализ и интерпретация магнитотеллурических данных. М.: Диалог-МГУ, 1997. 161 с.].

10. Berzin N.A., Coleman R.G., Dobretsov N.L., Zonenshain L.P., Xiao X., Chang E.Z., 1994. Geodynamic Map of the Western Part of the Paleo-Asian Ocean. Russian Geology and Geophysics 35, 5−22.

11. Berzin N.A., Kungurtsev L.V., 1996. Geodynamic Interpretation of Geological Complexes of the Altai-Sayan Region. Russian Geology and Geophysics 37 (1), 63–81 (in Russian) [Берзин Н.А., Кунгурцев Л.В. Геодинамическая интерпретация геологических комплексов Алтае-Саянской области // Геология и геофизика. 1996. Т. 37. № 1. С. 63–81].

12. Davies C., Allen M.B., Buslov M.M., Safonova I.Yu., 2010. Deposition in the Kuznetsk Basin, Siberia: Insights into the Permian–Triassic Transition and the Mesozoic Evolution of Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology 295 (1–2), 307–322. https://doi.org/10.1016/j.palaeo.2010.06.008.

13. Dobretsov N.L., Buslov M.M., Yu U., 2004. Fragments of Oceanic Islands in Accretion–Collision Areas of Gorny Altai and Salair, Southern Siberia, Russia: Early Stages of Continental Crustal Growth of the Siberian Continent in Vendian – Early Cambrian Time. Journal of Asian Earth Sciences 23 (5), 673–690. https://doi.org/10.1016/S1367-9120(03)00132-9.

14. Epov M.I., Pospeeva E.V., Vitte L.V., 2012. Crust Structure and Composition in the Southern Siberian Craton (Influence Zone of Baikal Rifting) from Magnetotelluric Data. Russian Geology and Geophysics 53 (3), 293–306. https://doi.org/10.1016/j.rgg.2012.02.006.

15. Fainberg E.B., Fiskina M.V., Rotanova N.M., 1977. Experimental data on Global Electromagnetic Sounding of the Earth. In: Studies of the Space-Time Structure of the Geomagnetic Field. Nauka, Moscow, p. 102–113 (in Russian) [Файнберг Э.Б., Фискина М.В., Ротанова Н.М. Экспериментальные данные по глобальному электромагнитному зондированию Земли // Исследования пространственно-временной структуры геомагнитного поля. М.: Наука, 1977. C. 102–113].

16. Fomichev V.D., Alekseeva L.E., 1961. Geological Review of Salair. In: Proceedings of VSEGEI, New Series. Vol. 63. Gosgeoltekhizdat, Moscow, 218 p. (in Russian) [Фомичев В.Д., Алексеева Л.Э. Геологический очерк Салаира // Труды ВСЕГЕИ, Новая серия. Т. 63. М.: Госгеолтехиздат, 1961. 218 с.].

17. Kocharyan G.G., Kishkina S.B., Budkov A.M., Ivanchenko G.N., 2019. On the Genesis of the 2013 Bachat Earthquake. Geodynamics & Tectonophysics 10 (3), 741–759 (in Russian) [Кочарян Г.Г., Кишкина С.Б., Будков А.М., Иванченко Г.Н. О генезисе Бачатского землетрясения 2013 года // Геодинамика и тектонофизика. 2019. Т. 10. № 3. С. 741–759]. https://doi.org/10.5800/GT-2019-10-3-0439.

18. Makarov V.I., Alekseev D.V., Leonov M.G., Batalev V.Y., Bataleva E.A., Bragin V.D., Rybin A.K., Shchelochkov G.G., Belyaev I.V., Dergunov N.T., Efimova N.N. et al., 2010. Underthrusting of Tarim beneath the Tien Shan and Deep Structure of Their Junction Zone: Main Results of Seismic Experiment along Manas Profile Kashgar-Song-Köl. Geotectonics 44, 102–126. https://doi.org/10.1134/S0016852110020020.

19. Maksimenko O.V., Rastegin A.A., Borshch S.S. et al., 1999. Report on the Results of Regional Seismic Surveys of Seismic Party 4/97 in the Kuznetsk Basin (Kemerovo Region). Vol. 1. 228 p. (in Russian) [Максименко О.В., Растегин А.А., Борщ С.С. и др. Отчет о результатах региональных сейсморазведочных работ МОГТ сейсмопартии 4/97 в Кузнецкой впадине (Кемеровская область). 1999. Т. 1. 228 с.].

20. Matveevskaya A.L., 1969. Hercynian Troughs of the Ob-Zaysan Geosynclinal System and Its Framing. Nauka, Moscow, 286 p. (in Russian) [Матвеевская А.Л. Герцинские прогибы Обь-Зайсанской геосинклинальной системы и ее обрамления. М.: Наука, 1969. 286 с.].

21. Metelkin D.V., 2012. Evolution of Structures in Central Asia and the Role of Strike-Slip Tectonics from Paleomagnetic Data. Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, 460 p. (in Russian) [Метелкин Д.В. Эволюция структур Центральной Азии и роль сдвиговой тектоники по палеомагнитным данным. Новосибирск: ИНГГ СО РАН, 2012. 460 с.].

22. Nevedrova N.N., Pospeeva E.V., Sanchaa A.M., 2011. Interpretation of Complex Electromagnetic Data in Seismically Active Regions: Case Study of the Chuya Depression, Mountain Altai. Izvestiya, Physics of the Solid Earth 47, 59–71. https://doi.org/10.1134/S1069351311010083.

23. Novikov I.S., Cherkas O.V., Mamedov G.M., Simonov Yu.G., Simonova T.Yu., Nastavko V.G., 2013. Activity Stages and Tectonic Division in the Kuznetsk Basin, Southern Siberia. Russian Geology and Geophysics 54 (3), 324–334. https://doi.org/10.1016/j.rgg.2013.02.007.

24. Novikov I.S., Emanov A.A., Leskova E.V., Batalev V.Yu., Rybin A.K., Bataleva E.A., 2008a. The System of Neotectonic Faults in Southeastern Altai: Orientations and Geometry of Motion. Russian Geology and Geophysics 49 (11), 859–867. https://doi.org/10.1016/j.rgg.2008.04.005.

25. Novikov I.S., Pospeeva E.V., 2017. Neotectonics of Eastern Gorny Altai: Evidence from Magnetotelluric Data. Russian Geology and Geophysics 58 (7), 769–777. https://doi.org/10.1016/j.rgg.2017.06.001.

26. Novikov I.S., Sokol E.V., 2007. Combustion Metamorphic Events as Age Markers of Orogenic Movements in Central Asia. Acta Petrologica Sinica 23 (7), 1561–1572.

27. Novikov I.S., Sokol E.V., Travin A.V., Novikova S.A., 2008b. Signature of Cenozoic Orogenic Movements in Combustion Metamorphic Rocks: Mineralogy and Geochronology (Example of the Salair – Kuznetsk Basin Transition). Russian Geology and Geophysics 49 (6), 378–396. https://doi.org/10.1016/j.rgg.2007.11.011.

28. Novikov I.S., Zhimulev F.I., Vetrov E.V., Savelieva P.Yu., 2019. Mesozoic and Cenozoic Geologic History and Surface Topography of the Northwestern Altai–Sayan Area. Russian Geology and Geophysics 60 (7), 781–792. https://doi.org/10.15372/RGG2019054.

29. Panina L.V., Zaitsev V.A., 2012. Neotectonics and Geodynamics of the Kuznetsk Basin. Moscow University Geology Bulletin 67, 332–339. https://doi.org/10.3103/S014587521206004X.

30. Park S.K., Bielinski R., Thompson S.C., Rybin A., Batalev V.Yu., 2003. Structural Constrains in Neotectonic Studies of Thrust Faults from the Magnitotelluric Method, Kochkor Basin, Kyrgyz Republic. Tectonics 22 (2), 1013. https://doi.org/10.1029/2001TC001318.

31. Plotkin V.V., Pospeeva E.V., Gubin D.I., 2017. Inversion of the Magnetotelluric Data in Fault Zones of Gorny Altai, Based on a Three-Dimensional Model. Russian Geology and Geophysics 58 (5), 650–658. https://doi.org/10.1016/j.rgg.2017.04.006.

32. Pospeev V.I., 1979. Results of Statistical Processing of Experimental Data on Global Magnetotelluric Sounding. In: Methods and Results of Geophysical Research in Eastern Siberia. East Siberian Publishing House, Irkutsk, p. 46–52 (in Russian) [Поспеев В.И. Результаты статистической обработки экспериментальных данных по глобальному магнитотеллурическому зондированию. // Методы и результаты геофизических исследований Восточной Сибири. Иркутск: Вост.-Сиб. кн. изд-во, 1979. С. 46–52].

33. Pospeeva E.V., Vitte L.V., Potapov V.V., Sakharova M.A., 2014. Magnetotelluric Studies in the Areas of Modern Tectonics and Seismic Activity (on the Example of Altai Mountains). Geophysics (4), 8–16 (in Russian) [Поспеева Е.В., Витте Л.В., Потапов В.В., Сахарова М.А. Магнитотеллурические исследования в районах новейшей тектоники и сейсмической активности (на примере Горного Алтая) // Геофизика. 2014. № 4. С. 8–16].

34. Przhiyalgovskii E.S., Lavrushina E.V., Leonov M.G., Batalev V.Y., Bataleva E.A., Rybin A.K., 2018. Structure of the Basement Surface and Sediments in the Kochkor Basin (Tien Shan): Geological and Geophysical Evidence. Russian Geology and Geophysics 59 (4), 335–350. https://doi.org/10.1016/j.rgg.2017.09.003.

35. Roslyakov N.A., Shcherbakov Yu.G., Alabin L.V., Nesterenko G.V., Kalinin Yu.A., Roslyakova N.V., Vasiliev I.P., Nevolko A.I., Osintsev S.R., 2001. Minerageny of the Junction Area of Salair and the Kolyvan-Tomsk Fold Zone. Publishing House of SB RAS, Novosibirsk, 243 p. (in Russian) [Росляков Н.А., Щербаков Ю.Г., Алабин Л.В., Нестеренко Г.В., Калинин Ю.А., Рослякова Н.В., Васильев И.П., Неволько А.И., Осинцев С.Р. Минерагения области сочленения Салаира и Колывань-Томской складчатой зоны. Новосибирск: Изд-во СО РАН, 2001. 243 с].

36. Rybin A.K., Bataleva E.A., Batalev V.Y., Matyukov V.E., Zabinyakova O.B., Nelin V.O., Morozov Y.A., Leonov M.G., 2018а. Specific Features in the Deep Structure of the Naryn Basin–Baibichetoo Ridge–Atbashi Basin System: Evidence from the Complex of Geological and Geophysical Data. Doklady Earth Sciences 479, 499–502. https://doi.org/10.1134/S1028334X18040165.

37. Rybin A.K., Leonov M.G., Przhiyalgovskii E.S., Batalev V.Yu., Bataleva E.A., Matyukov V.E., Lavrushina E.V., Zabinyakova O.B., Schelochkov G.G., 2018b. Upper Crust Structural and Morphological Ensembles of the Pamir-Tien Shan Segment of Central Asia and Their Reflection in Geophysical Fields. Vestnik of Saint Petersburg University. Earth Sciences 63 (4), 478–501 (in Russian) [Рыбин А.К., Леонов М.Г., Пржиялговский Е.С., Баталев В.Ю., Баталева Е.А., Матюков В.Е., Лаврушина Е.В., Забинякова О.Б., Щелочков Г.Г. Верхнекоровые структурно-морфологические ансамбли Памиро-Тянь-Шаньского сегмента Центральной Азии и их отражение в геофизических полях // Вестник СПбГУ. Науки о Земле. 2018. Т. 63. № 4. С. 478–501]. https://doi.org/10.21638/spbu07.2018.405.

38. Sass P., Ritter O., Ratschbacher L., Tympel J., Matiukov V.E., Rybin A.K., Batalev V.Yu., 2014. Resistivity Structure underneath the Pamir and Southern Tian Shan. Geophysical Journal International 198 (1), 564–579. https://doi.org/10.1093/gji/ggu146.

39. State Geological Map of the Russian Federation, 2007. Altai-Sayansk Series. Scale 1:1000000. Sheet N-45 (Novokuznetsk). Explanatory Note. VSEGEI Publishing House, Saint Petersburg, 665 p. (in Russian) [Государственная геологическая карта Российской Федерации. Серия Алтае-Саянская. Масштаб1:1000000. Лист N-45 (Новокузнецк): Объяснительная записка. СПб.: Изд-во ВСЕГЕИ, 2007. 665 с.].

40. State Geological Map of the Russian Federation, 2015. Kuzbass Series. Scale 1:200000. Sheet N-45-XIII (Maslyanino). Explanatory Note. Moscow Branch of VSEGEI, Moscow, 276 p. (in Russian) [Государственная геологическая карта Российской Федерации. Серия Кузбасская. Масштаб 1:200000. Лист N-45-XIII (Маслянино): Объяснительная записка. М.: МФ ВСЕГЕИ, 2015. 276 с.].

41. State Geological Map of the Russian Federation, 2018. Kuzbass Series. Scale 1:200000. Sheet N-45-XV (Leninsk Kuznetsky). Explanatory Note. Moscow Branch of VSEGEI, Moscow, 115 p. (in Russian) [Государственная геологическая карта Российской Федерации. Серия Кузбасская. Масштаб 1:200000. Лист N-45-XV (Ленинск-Кузнецкий): Объяснительная записка. М.: МФ ВСЕГЕИ, 2018. 115 с.].

42. State Geological Map of the Russian Federation, 2019a. Kuzbass Series. Scale 1:200000. Sheet N-45-XXVI (Tselinnoe). Explanatory Note. Moscow Branch of VSEGEI, Moscow, 89 p. (in Russian) [Государственная геологическая карта Российской Федерации. Серия Кузбасская. Масштаб 1:200000. Лист N-45-XXVI (Целинное): Объяснительная записка. М.: МФ ВСЕГЕИ, 2019. 89 c.].

43. State Geological Map of the Russian Federation, 2019b. Kuzbass Series. Scale 1:200000. Sheet N-45-XIV (Guryevsk). Explanatory Note. Moscow Branch of VSEGEI, 233 p. (in Russian) [Государственная геологическая карта Российской Федерации. Серия Кузбасская. Масштаб 1:200000. Лист N-45-XIV (Гурьевск): Объяснительная записка. М.: МФ ВСЕГЕИ, 2019. 233 с.].

44. State Geological Map of the Russian Federation, 2019c. Series Kuzbass. Scale of 1:200000. Sheet N-45-XXI (Prokopyevsk). Explanatory Note. VSEGEI Publishing House, Saint Petersburg, 286 p. (in Russian) [Государственная геологическая карта Российской Федерации. Серия Кузбасская. Масштаб 1:200000. Лист N-45-XXI (Прокопьевск): Объяснительная записка. СПб.: Изд-во ВСЕГЕИ, 2019. 286 с.].

45. Swift C.M., 1967. A Magnetotelluric Investigation of an Electrical Conductivity Anomaly in the Southwestern United States. PhD Thesis (Doctor of Philosophy). Massachusetts Institute of Technology, Cambridge, 211 p.

46. Trapeznikov Yu.A., Andreeva E.V., Batalev V.Yu., Berdichevsky M.N., Vanyan L.L., Volykhin A.M., Golubtsova N.S., Rybin A.K., 1997. Magnetotelluric Sounding in the Kyrgyz Tien Shan. Izvestiya, Physics of the Solid Earth 33 (1), 1–17.

47. Vdovin V.V., 1976. Main Stages of Relief Development. In: History of the Relief Development of Siberia and the Far East. Nauka, Moscow, 270 p. (in Russian) [Вдовин В.В. Основные этапы развития рельефа // История развития рельефа Сибири и Дальнего Востока. М.: Наука, 1976. 270 c.].

48. Yuzvitskiy A.Z., 1984. Tectonics and Deep Structure of the Kuznetsk Basin. International Geology Review 26 (8), 943–953. http://dx.doi.org/10.1080/00206818409466620.

49. Zhalkovskii N.D., Kuchai O.A., Muchnaya V.I., 1995. Seismicity and Some Characteristics of the Stressed State of the Earth’s Crust in the Altay-Sayan Region. Russian Geology and Geophysics 36 (10), 20–30 (in Russian) [Жалковский Н.Д., Кучай О.А., Мучная В.И. Сейсмичность и некоторые характеристики напряженного состояния земной коры Алтае-Саянской области // Геология и геофизика. 1995. Т. 36. № 10. С. 20–30].

50. Zhimulev F.I., Gillespie J.A., Glorie S., Jepson G., Vetrov E.V., De Grave J., 2020. Tectonic History of the Kolyvan–Tomsk Folded Zone (KTFZ), Russia: Insight from Zircon U/Pb Geochronology and Nd Isotopes. Geological Journal 55 (3), 1913–1930. https://doi.org/10.1002/gj.3679.

51. Zhimulev F.I., Gillespie J.A., Glorie S., Kotlyarov A.V., Vetrov E.V., De Grave J., 2018. Age and Paleotectonic Setting of the Devonian Volcanism of the Kolyvan-Tomsk Fold Zone. Insight from Detrital Zircon Geochronology of the Mitrofanov Formation. Geology and Mineral Resources of Siberia 35 (3), 13–24 (in Russian) [Жимулев Ф.И., Гиллеспи Дж., Глорие С., Котляров А.В., Ветров Е.В., Де Граве Й. Возраст и палеотектоническая обстановка девонского вулканизма Колывань-Томской складчатой зоны по данным датирования детритовых цирконов Митрофановской свиты // Геология и минерально-сырьевые ресурсы Сибири. 2018. Т. 35. № 3. С. 13–24]. http://dx.doi.org/10.20403/2078-0575-2018-3-13-24.

52. Zhimulev F.I., Gillespie J.A., Glorie S., Vetrov E.V., Boriskina V.I., Karakovskiy E.A., De Grave J., 2017. The Age of the Source Provenance of the Gorlovo Foreland Basin: Detrital Zircon U/Pb Ages of Balakhon Group Sandstones. Geosphere Research 2, 33–48. (in Russian) [Жимулев Ф.И., Гиллеспи Дж., Глорие С., Ветров Е.В., Борискина В.И., Караковский Е.А., Де Граве Й. Возраст питающих провинций Горловского передового прогиба: результаты датирования детритовых цирконов из песчаников балахонской серии // Геосферные исследования. 2017. № 2. С. 33–48]. https://doi.org/10.17223/25421379/3/3.

53. Zonenshain L.P., Kuzmin M.I., Natapov L.M., Page B.M., 1990. Geology of the USSR: A Plate Tectonic Synthesis. In: B.M. Page (Ed.), Geodynamics Series Monograph. American Geophysical Union 21, 242 p.


Для цитирования:


Жимулев Ф.И., Поспеева Е.В., Новиков И.С., Потапов В.В. ГЛУБИННОЕ СТРОЕНИЕ САЛАИРСКОГО СКЛАДЧАТО-ПОКРОВНОГО СООРУЖЕНИЯ (СЕВЕРО-ЗАПАД ЦЕНТРАЛЬНО-АЗИАТСКОГО СКЛАДЧАТОГО ПОЯСА) ПО ДАННЫМ МАГНИТОТЕЛЛУРИЧЕСКОГО ЗОНДИРОВАНИЯ. Геодинамика и тектонофизика. 2021;12(1):125-138. https://doi.org/10.5800/GT-2021-12-1-0517

For citation:


Zhimulev F.I., Pospeeva E.V., Novikov I.S., Potapov V.V. Deep structure of the Salair fold-nappe terrane (NW CAOB) according to magnetotelluric sounding. Geodynamics & Tectonophysics. 2021;12(1):125-138. (In Russ.) https://doi.org/10.5800/GT-2021-12-1-0517

Просмотров: 126


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)