The structure of deformation autosoliton fronts in rocks and geomedia
https://doi.org/10.5800/GT-2021-12-1-0515
Abstract
The paper describes numerical modeling of the generation and propagation of the fronts of moving deformation autosolitons in a loaded nonlinear strong medium. It presents solving a system of dynamic equations for solid mechanics, using an equation of state written in a relaxation form that takes into account both an overload of the solid medium and subsequent stress relaxation. The structure of a deformation autosoliton front is investigated in detail. It is shown that the front of a deformation autosoliton that is moving in an elastoplastic medium is a shear band (i.e. a narrow zone of intense shearing strain), which is oriented in the direction of maximum shear stress. Consecutive formation of such shear bands can be viewed as deformation autosoliton perturbations propagating along the axis of loading (compression or extension). A fine structure of a deformation autosoliton front is revealed. It is shown that slow autosoliton dynamics is an integral component of any deformation process, including the seismic process, in any solid medium. In contrast to fast autosoliton dynamics (when the velocities of stress waves are equal to the speed of sound), slow deformation autosoliton perturbations propagate at velocities 5–7 orders of magnitude lower than the velocities of sound. Considering the geomedium, it should be noted that slow dynamics plays a significant role in creating deformation patterns of the crust elements.
About the Authors
P. V. MakarovRussian Federation
36 Lenin Ave, Tomsk 634050
2/4 Akademicheskii Ave, Tomsk 634055
I. Yu. Smolin
Russian Federation
36 Lenin Ave, Tomsk 634050
2/4 Akademicheskii Ave, Tomsk 634055
V. A. Zimina
Russian Federation
36 Lenin Ave, Tomsk 634050
2/4 Akademicheskii Ave, Tomsk 634055
References
1. Balokhonov R.R., Romanova V.A., Martynov S.A., Schwab E.A., 2013. Simulation of Deformation and Fracture of Coated Material with Account for Propagation of a Lüders–Chernov Band in the Steel Substrate. Physical Mesomechanics 16, 133–140. https://doi.org/10.1134/S1029959913020045.
2. Bornyakov S.A., Salko D.V., Seminsky K.Zh., Demberel S., Ganzorig D., Batsaihan T., Togtohbayar S., 2017. Instrumental Recording of Slow Deformation Waves in the South Baikal Geodynamic Study Site. Doklady Earth Sciences 473, 371–374. https://doi.org/10.1134/S1028334X17030229.
3. Bott M.H.P., Dean D.S., 1973. Stress Diffusion from Plate Boundaries. Nature 243, 339–341. https://doi.org/10.1038/243339a0.
4. Bykov V.G., 1996. On the Possibility of the Formation of Solitary Seismic Waves in Granular Geomaterials. Journal of Mining Science 32, 105–108. https://doi.org/10.1007/BF02046679.
5. Bykov V.G., 2005. Deformation Waves of the Earth: Concept, Observations and Models. Russian Geology and Geophysics 46 (11), 1176–1190. https://doi.org/10.5800/GT-2015-6-2-0178.
6. Bykov V.G., 2014. Sine-Gordon Equation and Its Application to Tectonic Stress Transfer. Journal of Seismology 18, 497–510. https://doi.org/10.1007/s10950-014-9422-7.
7. Bykov V.G., 2015. Nonlinear Waves and Solitons in Models of Fault Block Geological Media. Russian Geology and Geophysics 56 (5), 793–803. https://doi.org/10.1016/j.rgg.2015.04.010.
8. Bykov V.G., 2018. Prediction and Observation of Strain Waves in the Earth. Geodynamics & Tectonophysics 9 (3), 721–754 (in Russian) [Быков В.Г. Предсказание и наблюдение деформационных волн Земли // Геодинамика и тектонофизика. 2018. Т. 9. № 3. С. 721–754]. https://doi.org/10.5800/GT-2018-9-3-0369.
9. Danilov V.I., Gorbatenko V.V., Zuev L.B., Orlova D.V., Danilova L.V., 2017 Investigation of Lüders Deformation in the Mild Steel. Izvestiya. Ferrous Metallurgy 60 (10), 831–838 (in Russian) [Данилов В.И., Горбатенко В.В., Зуев Л.Б., Орлова Д.В., Данилова Л.В. Исследование деформации Людерса в малоуглеродистой стали // Известия. Черная металлургия. 2017. Т. 60. № 10. С. 831–838]. https://doi.org/10.17073/0368-0797-2017-10-831-838.
10. De Borst R., 2001. Some Recent Issues in Computational Failure Mechanics. International Journal for Numerical Methods in Engineering 52 (1–2), 63–95. https://doi.org/10.1002/nme.272.
11. Gol’din S.V., Yushin V.I., Ruzhich V.V., Smekalin O.P., 2002. Slow Motion – Myth or Reality? In: Physical Bases for Prediction of Rock Failure. Proceedings of the 9th International Workshop (September 09–15, 2001). Krasnoyarsk, 213–220 (in Russian) [Гольдин С.В., Юшин В.И., Ружич В.В., Смекалин O.П. Медленные движения – миф или реальность? // Физические основы прогнозирования разрушения горных пород: Материалы IX Международной школы-семинара (9–15 сентября 2001 г.). Красноярск, 2002. С. 213–220].
12. Hall E.O., 1970. Yield Point Phenomena in Metals and Alloys. Plenum Press, New York, 296 p. https://doi.org/10.1007/978-1-4684-1860-6.
13. Kerner B.S., Osipov V.V., 1989. Autosolitons. Soviet Physics Uspekhi 32, 101–138. https://doi.org/10.1070/PU1989v032n02ABEH002679.
14. Kerner B.S., Osipov V.V., 1994. Autosolitons: A New Approach to Problems of Self-Organization and Turbulence. Springer, Dordrecht, 671 p. https://doi.org/10.1007/978-94-017-0825-8.
15. Kuz’min Y.O., 2012. Deformation Autowaves in Fault Zones. Izvestiya, Physics of the Solid Earth 48, 1–16. https://doi.org/10.1134/S1069351312010089.
16. Majewski E., 2006. Rotational Energy and Angular Momentum of Earthquakes. In: R. Teisseyre, E. Majewski, M. Takeo (Eds), Earthquake Source Asymmetry, Structural Media and Rotation Effects. Springer, Berlin, Heidelberg, 217–225. https://doi.org/10.1007/3-540-31337-0_16.
17. Makarov P.V., Eremin M.O., 2014. Jerky Flow Model as a Basis for Research in Deformation Instabilities. Physical Mesomechanics 17, 62–80. https://doi.org/10.1134/S1029959914010081.
18. Makarov P.V., Khon Yu.A., Peryshkin A.Yu., 2018. Slow Deformation Fronts: Model and Features of Distribution. Geodynamics & Tectonophysics 9 (3), 755–769 (in Russian) [Макаров П.В., Хон Ю.А., Перышкин А.Ю. Медленные деформационные фронты. Модель и особенности распространения. Геодинамика и тектонофизика. 2018. Т. 9. № 3. С. 755–769]. https://doi.org/10.5800/GT-2018-9-3-0370.
19. Makarov P.V., Peryshkin A.Y., 2017. Slow Motions as Inelastic Strain Autowaves in Ductile and Brittle Media. Physical Mesomechanics 20, 209–221. https://doi.org/10.1134/S1029959917020114.
20. Makarov P.V., Peryshkin A.Yu., 2019. Autosoliton Model of Slow Deformation Processes in Active Media. AIP Conference Proceedings 2167, 020210. https://aip.scitation.org/doi/abs/10.1063/1.5132077.
21. McLean D., 1962. Mechanical Properties of Metals. John Wiley & Sons, New York, 199 p.
22. Mikushina V.A., Smolin I.Yu., 2019. Numerical Investigation of the Influence of Governing Parameters on the Features of Slow Deformation Autowaves. AIP Conference Proceedings 2167, 020223. https://doi.org/10.1063/1.5132090.
23. Nikolaevsky V.N., 1995. Mathematical Modeling of Solitary Deformation and Seismic Waves. Doklady Earth Sciences 341 (3), 403–405 (in Russian) [Николаевский В.Н. Математическое моделирование уединенных деформационных и сейсмических волн // Доклады АН. 1995. Т. 341. № 3. С. 403–405].
24. Savage J.C., 1971. A Theory of Creep Waves Propagating along a Transform Fault. Journal of Geophysical Research 76 (8), 1954–1966. https://doi.org/10.1029/JB076i008p01954.
25. Wilkins M.L., 1999. Computer Simulation of Dynamic Phenomena. Springer-Verlag, Berlin and Heidelberg, 246 p.
26. Zuev L.B., Danilov V.I., Barannikova S.A., 2008. Physics of Macrolocalization of Plastic Flow. Nauka, Novosibirsk, 328 p. (in Russian) [Зуев Л.Б., Данилов В.И., Баранникова С.А. Физика макролокализации пластического течения. Новосибирск: Наука, 2008. 328 с.].
Review
For citations:
Makarov P.V., Smolin I.Yu., Zimina V.A. The structure of deformation autosoliton fronts in rocks and geomedia. Geodynamics & Tectonophysics. 2021;12(1):100-111. (In Russ.) https://doi.org/10.5800/GT-2021-12-1-0515