Preview

Geodynamics & Tectonophysics

Advanced search

FAULT SYSTEMS IN THE UPPER CRUST OF THE FENNOSCANDIAN SHIELD, THE EAST EUROPEAN PLATFORM

https://doi.org/10.5800/GT-2020-11-4-0505

Abstract

Directions of 683 faults located in the southeastern part of the Fennoscandian (Baltic) shield were statistically analyzed, and three orthogonal associations of fault systems were identified in the study area. According to the dynamic analysis of the fault systems and their associations, the main NW-striking faults belong to the fault network originating mainly from the early Paleoproterozoic. These faults functioned in the Paleoproterozoic during four main deformation stages: D1 – sinistral shear transtension and asymmetric rift genesis (2.1–1.9 Ga); D2 – sinistral shear transpression under oblique accretion and convergence (1.9 Ga); D3 – sinistral shear transpression under oblique collision (1.89–1.80 Ga); D4 – dextral strike-slip displacements at the background of complex escape tectonics of the late collision stage (1.80–1.78 Ga). The regional stress field changed as follows: D1 – northeast- or east-trending extension; D2 – northeast compression; D3 – sub-latitudinal compression; D4 – sub-meridian compression. Changes in dynamic loading conditions led to multiple kinematic inversions of the fault networks. Widespread transtension and transpression settings in the southeastern parts of the Baltic Shield give evidence of asymmetric rifting, oblique accretion and collision in the Paleoproterozoic, which must be taken in to account in geodynamic reconstructions.

About the Authors

V. S. Burtman
Geological Institute, Russian Academy of Sciences
Russian Federation
7 Pyzhevsky Ln, Moscow 119017


S. Yu. Kolodyazhny
Geological Institute, Russian Academy of Sciences
Russian Federation
7 Pyzhevsky Ln, Moscow 119017


References

1. Bogdanova S.V., 1993. Segments of the East European Craton. In: D.G. Gee, M. Beckholmen (Eds), EUROPROBE 1991, Jablonna. Państwowe Wydawnictwo Naukowe, Warszawa, p. 33–38.

2. Bogdanova S.V., Garetsky R.G., 2006. EUROBRIDGE Project: Paleoproterozoic Accretion and Crustal Collision in Fennoscandia and Sarmatia. Geology and Geophysical Images. In: A.F. Morozov, N.V. Mezhelovsky, N.I. Pavlenkova (Eds), Structure and Dynamics of the Lithosphere of Eastern Europe. GEOKART, GEOS, Moscow, p. 221–290 (in Russian)

3. Bogdanova S.V., Pashkevich I.K., Gorbatchev R., Orlyuk M.I., 1996. Riphean Rifting and Major Palaeproterozoic Crustal Boundaries in the Basement of the East European Craton: Geology and Geophysics. Tectonophysics 268 (1–4), 1–21. https://doi.org/10.1016/S0040-1951(96)00232-6.

4. Burzunova Yu.P., 2011. Angles between Conjugated Systems of near Fault Fractures in Idealized and Natural Paragenesises Formed in Various Dynamic Settings. Lithosphere 2, 94–110 (in Russian)

5. Cloetingh S.A.P.L., Ziegler P.A., Bogaard P.J.F., Andriessen P.A.M., Artemieva I.M., Bada G., van Balen R.T., Beekman F., Ben-Avraham Z. et al., 2007. TOPO-EUROPE: The Geoscience of Coupled Deep Earth-Surface Processes. Global and Planetary Change 58 (1–4), 1–118. https://doi.org/10.1016/j.gloplacha.2007.02.008.

6. Garetsky R.G., 2007. Features of Tectonics and Geodynamics of the East European Platform. Lithosphere 2 (27), 3–13 (in Russian)

7. Glebovitskii V.A., 2005. The Early Precambrian of the Baltic Shield. Nauka, Saint Petersburg, 711 p. (in Russian)

8. Gorbatschev R., Bogdanova S., 1993. Frontiers in the Baltic Shield. Precambrian Research 64 (1–4), 3–21. https://doi.org/10.1016/0301-9268(93)90066-B.

9. Gordeev N.A., 2018. Interrelation of Neotectonics and Geodynamics of Ancient Platforms on the Example of the Olenek Uplift and Its Southern Framing. Proceedings of the Fersman Scientific Session of the GI KSC RAS. Vol. 15, p. 116–119 (in Russian) https://doi.org/10.31241/FNS.2018.15.027.

10. Gzovsky M.V., 1975. Fundamentals of Tectonophysics. Nauka, Moscow, 536 p. (in Russian)

11. Hanmer S., Passchier C., 1991. Shear-Sense Indicators: a Review. Geological Survey of Canada Paper 90–17. Ottawa, 72 p. https://doi.org/10.1017/S0016756800020112.

12. Heiskanen K.I., 1990. Paleogeography of the Baltic Shield in Karelian Time. KSC USSR Publishing House, Petrozavodsk, 126 p. (in Russian)

13. Huhma H., 1986. Sm-Nd, U-Pb and Pb-Pb Isotopic Evidence for the Origin of the Early Proterozoic Svecokarelian Crust in Finland. Bulletin of the Geological Survey of Finland 337, 48 p.

14. Ivanov S.N., 1994. The Probable Nature of the Main Seismic Boundaries in the Continental Crust. Geotectonics 3, 3–13 (in Russian)

15. Karakin A.V., Kuryanov Yu.A., Pavlenkova N.I., 2003. Faults, Fractured Zones and Waveguides in the Upper Layers of the Earth’s Shell. Geosystem Publishing, Moscow, 221 p. (in Russian)

16. Karki A., Laajoki K., 1995. An Interlinked System of Folds and Ductile Shear Zones – Late Stage Svecokarelian Deformation in the Central Fennoscandian Shield, Finland. Journal of Structural Geology 17 (9), 1233–1247. https://doi.org/10.1016/0191-8141(95)00006-Y.

17. Karki A., Laajoki K., Luukas J., 1993. Major Paleoproterozoic Shear Zones of the Central Fennoscandian Shield. Precambrian Research 64 (1–4), 207–224. https://doi.org/10.1016/0301-9268(93)90077-F.

18. Koistinen T., Stephens M.B., Bogachev V., Nordgulen O., Wennerstrom M., Korchonen J., 2001. Geological Map of the Fennoscandian Shield. Scale 1:2 000 000. Geological Surveys of Norway, Sweden, Russia and Finland: Trondheim – Uppsala – Moscow – Espoo.

19. Kolodyazhny S.Yu., 1998. Structural-Metamorphic Assemblages of the Kukasozero Segment of the North Karelian Zone (Baltic Shield). Geotectonics 32 (6), 488–505.

20. Kolodyazhny S.Yu., 1999. Structural Assemblages and Kinematics of the Koikar Shear Zone, Karelian Massif. Geotectonics 33 (6), 448–461.

21. Kolodyazhny S.Yu., 2006. Structural and Kinematic Evolution of the South-Eastern Part of the Baltic Shield in the Paleoproterozoic. GEOS, Moscow, 332 p. (in Russian)

22. Kolodyazhny S.Yu., 2010. Structural and Kinematic Assemblies in Sedimentary Rocks of the Phanerozoic Cover of the Mid-Russian Dislocation Zone. Geotectonics 44 (2), 139–157. https://doi.org/10.1134/S0016852110020044.

23. Kolodyazhny S.Yu., 2018. Long-Lived Structural Ensembles of the East European Platform. Article 1. The Basement Tectonics. Proceedings of Higher Educational Establishments. Geology and Exploration 2, 5–13 (in Russian) https://doi.org/10.32454/0016-7762-2018-2-5-13.

24. Korja A., Lahtinen R., Nironen M., 2006. The Svecofennian Orogen: A Collage of Microcontinents and Island Arcs. Geological Society London Memoirs 32, 561–578. https://doi.org/10.1144/GSL.MEM.2006.032.01.34.

25. Kozhevnikov V.N. 2000. Archean Greenstone Belts of the Karelian Craton as Accreationary Orogens. KSC RAS, Petrozavodsk, 223 p. (In Russian)

26. Kratts K.O., 1963. Geology of Karelides of Karelia. Publishing House of the USSR Academy of Sciences, Moscow–Leningrad, 230 p. (in Russian)

27. Kulikov V.S., Svetov S.A., Slabunov A.I., Kulikova V.V., Polin A.K., Golubev A.I., Gorkovets V.Ya., Ivashchenko V.I., Gogolev M.A., 2017. Geological Map of Southeastern Fennoscandia in Scale 1:750 000: A New Approach to Map Compilation. Proceedings of KSC RAS. Iss. 2, p. 3–41 (in Russian) https://doi.org/10.17076/geo444.

28. Lahtinen R., Huhma H., 1997. Isotopic and Geochemical Constraints on the Evolution of the 1.93–1.79 Ga Svecofennian Crust and Mantle. Precambrian Research 82 (1–2), 13–34. https://doi.org/10.1016/S0301-9268(96)00062-9.

29. Lahtinen R., Korja A., Nironen M., 2005. Chapter 11 Paleoproterozoic Tectonic Evolution. Developments in Precambrian Geology 14, 481–531. https://doi.org/10.1016/S0166-2635(05)80012-X.

30. Leonov M.G., Kulikov V.S., Zykov D.S., Kolodyazhny S.Yu., Poleshchuk A.V., 2011. Tectonics. In: L.V. Glushanin, N.V. Sharov, V.V. Shchiptsov (Eds), Palaeoproterozoic Onega Structure: Geology, Tectonics, Deep Structure and Mineralogeny. KSC RAS, Petrozavodsk, p. 127–170 (in Russian)

31. Leonov Yu.G., 1997. Tectonic Mobility of the Platform Crust at Different Depths. Geotectonics 31 (4), 279–293.

32. Miller Yu.V., 1988. Structure of Archean Greenstone Belts. Nauka, Leningrad, 144 p. (in Russian)

33. Mints M.V., 2018. 3D Model of the Deep Structure of the Svecofennian Accretionary Orogen: A Geodynamic Interpretation. Proceedings of KSC RAS. Iss. 2. P. 62–76 (in Russian) https://doi.org/10.17076/geo698.

34. Mints M.V., Eriksson P.G. 2016. Secular Changes in Relationships between Plate-Tectonic and Mantle-Plume Engendered Processes during Precambrian Time. Geodynamics & Tectonophysics 7 (2), 173–232 (in Russian) https://doi.org/10.5800/GT-2016-7-2-0203.

35. Mints M.V., Sokolova E.Yu., LADOGA Working Group, 2018. 3D Model of the Deep Structure of the Svecofennian Accretionary Orogen Based on Data from CDP Seismic Reflection Method, MT Sounding and Density Modeling. Proceedings of KSC RAS. Iss. 2, p. 34–61 (in Russian) https://doi.org/10.17076/geo656.

36. Morozov A.F. (Ed.), 2010. Deep Structure, Evolution and Mineral Resources of the Early Precambrian Basement of the East European Platform: Interpretation of Materials for Profiles 1-EB, 4B and TATSES. Vol. 2. Iss. 4. GEOKART, GEOS, Moscow, 400 p. (in Russian)

37. Morozov Yu.A., 1999. The Role of Transpression in the Structural Evolution of the Svecokarelides in the Baltic Shield. Geotectonics 33 (4), 302–313.

38. Morozov Yu.A., 2002. The Structure-Forming Role of Transpression and Transtension. Geotectonics 36 (6), 431–450.

39. Nironen M., 1997. The Svecofennian Orogen: A Tectonic Model. Precambrian Research 86 (1–2), 21–44. https://doi.org/10.1016/S0301-9268(97)00039-9.

40. Nironen M., Elliott B.A., Ramo O.T., 2000. 1.88–1.87 Ga Post-Kinematic Intrusions of the Central Finland Granitoid Complex: A Shift from C-Type to A-Type Magmatism during Lithospheric Convergence. Lithos 53 (1), 37–58. https://doi.org/10.1016/S0024-4937(00)00007-4.

41. Peltonen P., Kontinen A., Huhma H., 1998. Petrogenesis of the Mantle Sequence of the Jormua Ophiolite (Finland): Melt Migration in the Upper Mantle during Palaeoproterozoic Continental Break-Up. Journal of Petrology 39 (2), 297–329. https://doi.org/10.1093/petroj/39.2.297.

42. Ramo O.T., Vaasjoki M., Manttari I., Elliott B.A., Nironen M., 2001. Petrogenesis of the Post-Kinematic Magmatism of the Central Finland Granitoid Complex: I. Radiogenic Isotope Constraints and Implications for Crustal Evolution. Journal of Petrology 42 (11), 1971–1993. https://doi.org/10.1093/petrology/42.11.1971.

43. Rebetsky Yu.L., 2007. Tectonic Stresses and Strength of Mountain Ranges. Nauka, Moscow, 406 p. (in Russian)

44. Riedel W., 1929. Zur Mechanik Geologischer Brucherscheinungen, ein Beitrag zum Problem der «Fiederspalten». Zentralblatt für Mineralogie, Geologie und Palӓontologie. Abt. B, 354–368.

45. Seminsky K.Zh., 1997. Angle Relationships between Conjugate Joint Systems near Strike-Slip, Normal, and Thrust Fault Planes. Doklady Earth Sciences 354 (4), 531–533.

46. Seminsky К.Zh., 2014. Specialized Mapping of Crustal Fault Zones. Part 1: Basic Theoretical Concepts and Principles. Geodynamics & Tectonophysics 5 (2), 445–467. (in Russian) https://doi.org/10.5800/GT-2014-5-2-0136.

47. Sherman S.I., 1977. Physical Regularities of Crustal Faulting. Nauka, Novosibirsk, 102 p. (in Russian)

48. Sherman S.I., 1981. Shifts and Transform Faults of the Lithosphere. In: N.A. Logachev, S.I. Sherman (Eds), Problems of Fault Tectonics. Nauka, Novosibirsk, p. 5–44 (in Russian)

49. Sidorenko A.V. (Ed.), 1980. Map of Faults of the USSR and Neighboring Countries. Scale 1:2 500 000. The USSR Ministry of Geology, Moscow (in Russian)

50. Sim L.A., Marinin A.V., 2015. Methods of Field Tectonophysics for Identification of Paleostresses. In: Modern Tectonophysics. Methods and Results. Materials of the Fourth Youth Tectonophysical Workshop. Vol. 2. IPE RAS Publishing House, Moscow, p. 47–76 (in Russian)

51. Sokolov V.A. (Ed.), 1987. Geology of Karelia. Nauka, Leningrad, 231 p. (in Russian)

52. Sokolov V.A., Galdobina L.P., Ryleev A.V., Satsuk Yu.I., Svetov A.P., Heiskanen K.I., 1970. Geology, Lithology and Paleogeography of the Yatulian Rocks of the Central Karelia. Karelia Publishing House, Petrozavodsk, 366 p. (in Russian)

53. Svetov A.P., 1979. Platform Basalt Volcanism of the Karelians. Nauka, Leningrad, 208 p. (in Russian)

54. Svetov A.P., Sviridenko L.P., 1991. Magmatism of Suture Zones of the Baltic Shield. Nauka, Leningrad, 199 p. (in Russian)

55. Systra Yu.Y., 1991. Tectonics of the Karelian Region. Nauka, Saint Petersburg, 176 p. (in Russian)

56. Väisänen M., Mänttäri I., Kriegsman L.M., Hölttä P., 2000. Tectonic Setting of Post-Collisional Magmatism in the Palaeoproterozoic Svecofennian Orogen, SW Finland. Lithos 54 (1–2), 63–81. https://doi.org/10.1016/S0024-4937(00)00018-9.


Review

For citations:


Burtman V.S., Kolodyazhny S.Yu. FAULT SYSTEMS IN THE UPPER CRUST OF THE FENNOSCANDIAN SHIELD, THE EAST EUROPEAN PLATFORM. Geodynamics & Tectonophysics. 2020;11(4):756-769. (In Russ.) https://doi.org/10.5800/GT-2020-11-4-0505

Views: 871


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)