RECONSTRUCTION OF THE TECTONIC STRESS FIELD IN THE DEEP PARTS OF THE SOUTHERN KURIL-KAMCHATKA AND NORTHERN JAPAN SUBDUCTION ZONES
https://doi.org/10.5800/GT-2020-11-4-0504
Abstract
About the Author
D. A. SafonovRussian Federation
1B Nauki St, Yuzhno-Sakhalinsk 693022
References
1. Astiz L., Lay T., Kanamori H., 1988. Large Intermediate-Depth Earthquakes and the Subduction Process. Physics of the Earth and Planetary Interiors 53 (1–2), 80–166. https://doi.org/10.1016/0031-9201(88)90138-0.
2. Averianova V.N., 1975. Deep Seismotectonics of Island Arcs: Northwestern Pacific. Nauka, Moscow, 219 p. (in Russian)
3. Balakina L.M., 1995. Kuril-Kamchatka Seismogenic Zone – Structure and Earthquake Generation Sequence. Izvestiya, Physics of the Solid Earth 12, 48–57 (in Russian)
4. Barnes G.L., 2003. Origins of the Japanese Islands: The New «Big Picture». Nichibunken Japan Review 15, 3–50. https://www.jstor.org/stable/25791268.
5. Bird P., 2003. An Updated Digital Model of Plate Boundaries. Geochemistry, Geophysics, Geosystems 4 (3). https://doi.org/10.1029/2001GC000252.
6. Christova C.V., 2015. Spatial Distribution of the Contemporary Stress Field in the Kurile Wadati-Benioff Zone by Inversion of Earthquake Focal Mechanisms. Journal of Geodynamics 83, 1–17. https://doi.org/10.1016/j.jog.2014.11.001.
7. Christova C., Hirata N., Kato A., 2006. Contemporary Stress Field in the Wadati-Benioff Zone at the Japan-Kurile Arc-Arc Junction (North Honshu, the Hokkaido Corner and Hokkaido Island) by Inversion of Earthquake Focal Mechanisms. Bulletin of the Earthquake Research Institute 81, 1–18.
8. Christova C., Tsapanos T., 2000. Depth Distribution of Stresses in the Hokkaido Wadati-Benioff Zone as Deduced by Inversion of Earthquake Focal Mechanisms. Journal of Geodynamics 30 (5), 557–573. https://doi.org/10.1016/S0264-3707(00)00009-0.
9. DeMets C., Gordon R.G., Argus D.F., 2010. Geologically Current Plate Motion. Geophysical Journal International 181 (1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x.
10. Dziewonski A.M., Chou T-A., Woodhouse J.H., 1981. Determination of Earthquake Source Parameters from Waveform Data for Studies of Global and Regional Seismicity. Journal of Geophysical Research: Solid Earth 86 (В4), 2825. https://doi.org/10.1029/JB086iB04p02825.
11. Ekström G., Nettles M., Dziewonski A.M., 2012. The Global CMT Project 2004–2010: Centroid-Moment Tensors for 13.017 Earthquakes. Physics of the Earth and Planetary Interiors 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002.
12. Fujita K., Kanamori H., 1981. Double Seismic Zones and Stresses of Intermediate Depth Earthquakes. Geophysical Journal International 66 (1), 131-156. https://doi.org/10.1111/j.1365-246X.1981.tb05950.x.
13. Ghimire S., Kasahara M., 2009. Spatial Variation in Seismotectonics and Stress Conditions across the Kurile and Japan Trenches Inferred from the Analysis of Focal Mechanism Data in Hokkaido, Northern Japan. Journal of Geodynamics 47 (2–3), 153–166. https://doi.org/10.1016/j.jog.2008.07.007.
14. Glennon M.A., Chen W.-P., 1993. Systematics of Deep‐Focus Earthquakes along the Kuril‐Kamchatka Arc and Their Implications on Mantle Dynamics. Journal of Geophysical Research: Solid Earth 98 (B1), 735–769. https://doi.org/10.1029/92JB01742.
15. Hayes G.P., 2018. Slab2 – A Comprehensive Subduction Zone Geometry Model: U.S. Geological Survey data release. https://doi.org/10.5066/F7PV6JNV.
16. Hayes G.P., Wald D.J., Johnson R.L., 2012. Slab1.0: A Three‐Dimensional Model of Global Subduction Zone Geometries. Journal of Geophysical Research: Solid Earth 117 (B1). https://doi.org/10.1029/2011JB008524.
17. Horiuchi S., Koyama J., Izutani Y., Onodera I., Hirasawa T., 1975. Earthquake Generating Stress in the Kurile-Kamchatka Seismic Region Derived from Superposition of P-Wave Initial Motions. The Science Reports of the Tohoku University. Ser. 5. Tohoku Geophysical Journal 23 (2), 67–81.
18. Huang J., Zhao D., 2006. High‐Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research: Solid Earth 111 (B9). https://doi.org/10.1029/2005JB004066.
19. Igarashi T., Matsuzawa T., Umino N., Hasegawa A., 2001. Spatial Distribution of Focal Mechanisms for Interplate and Intraplate Earthquakes Associated with the Subducting Pacific Plate beneath the Northeastern Japan Arc: A Triple‐Planed Deep Seismic Zone. Journal of Geophysical Research: Solid Earth 106 (B2), 2177–2191. https://doi.org/10.1029/2000JB900386.
20. Isacks B.L., Oliver J., Sykes L.R., 1968. Seismology and the New Global Tectonics. Journal of Geophysical Research, 73, 5855–5899. https://doi.org/10.1029/JB073i018p05855.
21. Katsumata K., Wada N., Kasahara M., 2003. Newly Imaged Shape of the Deep Seismic Zone within the Subducting Pacific Plate beneath the Hokkaido Corner, Japan‐Kurile Arc‐Arc Junction. Journal of Geophysical Research: Solid Earth 108 (B12). https://doi.org/10.1029/2002JB002175.
22. Khain V.E., Lomize M.G., 2005. Geotectonics with Fundamentals of Geodynamics. University Book House, Moscow, 500 p. (in Russian)
23. Kogan M.G., Vasilenko N.F., Frolov D.I., Freymueller J.T., Steblov G.M., Levin B.W., Prytkov A.S., 2011. The Mechanism of Postseismic Deformation Triggered by the 2006–2007 Great Kuril Earthquakes. Geophysical Research Letters 38 (6). https://doi.org/10.1029/2011GL046855.
24. Kubo A., Fukuyama E., Kawa H., Nonomura K., 2002. NIED Seismic Moment Tensor Catalogue for Regional Earthquakes around Japan: Quality Test and Application. Tectonophysics 356 (1), 23–48. https://doi.org/10.1016/S0040-1951(02)00375-X.
25. Lallemand S., 2016. Philippine Sea Plate Inception, Evolution, and Consumption with Special Emphasis on the Early Stages of Izu-Bonin-Mariana Subduction. Progress in Earth and Planetary Science 3 (15). https://doi.org/10.1186/s40645-016-0085-6.
26. Lay T., Ammon C.J., Kanamori H., Kim M.J., Xue L., 2011. Outer Trench-Slope Faulting and the 2011 Mw 9.0 off the Pacific Coast of Tohoku Earthquake. Earth, Planets and Space 63 (37), 713–718. https://doi.org/10.5047/eps.2011.05.006.
27. Polets A.Yu., 2018. The Stress-Strained State of Zones of Deep-Focus Earthquakes of the Japan Sea Region. Geosystems of Transition Zones 2 (4), 302–311 (in Russian) http://dx.doi.org/10.30730/2541-8912.2018.2.4.302-311.
28. Polets A.Yu., Zlobin T.K., 2014. Estimation of the Stress State of the Earth’s Crust and the Upper Mantle in the Area of the Southern Kuril Islands. Russian Journal of Pacific Geology 8 (2), 126–137. https://doi.org/10.1134/S1819714014020067.
29. Poplavskaya L.N., Rudik M.I., Nagornykh T.V., Safonov D.A., 2011. Catalogue of Focal Mechanisms of Strong (М≥6.0) Earthquakes in the Kuril-Okhotsk Region of 1964–2009. Dal'nauka, Vladivostok, 131 p. (in Russian)
30. Rebetsky Yu.L., 1999. Methods for Reconstructing Tectonic Stresses and Seismotectonic Deformations Based on the Modern Theory of Plasticity. Doklady Earth Sciences 365А, 370–373 (in Russian)
31. Rebetsky Yu.L., 2003. Development of the Cataclastic Analysis Method of Slip Faults for Tectonic Stress Estimation. Doklady Earth Sciences 388 (2), 237–241 (in Russian)
32. Rebetsky Yu.L., Polets A.Yu., 2014. The State of Stresses of the Lithosphere of Japan before the Catastrophic Tohoku Earthquake of 11.03.2011. Geodynamics & Tectonophysics 5 (2), 469–506 (in Russian) https://doi.org/10.5800/GT-2014-5-2-0137.
33. Rodkin M.V., Rundkvist D.V., 2017. Geofluid Geodynamics. Application to Seismology, Tectonics, Ore and Oil Genesis Processes. Intellect, Dolgoprudny, 288 p. (in Russian)
34. Safonov D.A., 2019. Spatial Distribution of Tectonic Stress in the Southern Deep Part of the Kuril-Kamchatka Subduction Zone. Geosystems of Transition Zones 3 (2), 175–188 (in Russian) http://dx.doi.org/10.30730/2541-8912.2019.3.2.175-188.
35. Safonov D.A., Konovalov A.V., Zlobin T.K., 2015. The Urup Earthquake Sequence of 2012–2013. Journal of Volcanology and Seismology 9, 402–411. https://doi.org/10.1134/S074204631506007X.
36. Safonov D.A., Nagornykh N.V., Kovalenko N.S., 2019. Seismicity of the Amur and Primorye Region. IMGG FEB RAS, Yuzhno-Sakhalinsk, 104 p. (in Russian) http://dx.doi.org/10.30730/978-5-6040621-0-4.2019-1.
37. Terakawa T., Matsu’ura M., 2010. The 3‐D Tectonic Stress Fields in and around Japan Inverted from Centroid Moment Tensor Data of Seismic Events. Tectonics 29 (6). https://doi.org/10.1029/2009TC002626.
38. Wada I., He J., Hasegawa A., Nakajima J., 2015. Mantle Wedge Flow Pattern and Thermal Structure in Northeast Japan: Effects of Oblique Subduction and 3-D Slab Geometry. Earth and Planetary Science Letters 426, 76–88. https://doi.org/10.1016/j.epsl.2015.06.021.
39. Zhang H., Thurber C.H., Shelly D., Ide S., Beroza G.C., Hasegawa A., 2004. High-Resolution Subducting-Slab Structure beneath Northern Honshu, Japan, Revealed by Double-Difference Tomography. Geology 32 (4), 361–364. https://doi.org/10.1130/G20261.2.
40. Zlobin T.K., Safonov D.A., Polets A.Y., 2011. Distribution of Earthquakes by the Types of the Source Motions in the Kuril-Okhotsk Region. Doklady Earth Sciences 440, 1410. https://doi.org/10.1134/S1028334X11100096.
Review
For citations:
Safonov D.A. RECONSTRUCTION OF THE TECTONIC STRESS FIELD IN THE DEEP PARTS OF THE SOUTHERN KURIL-KAMCHATKA AND NORTHERN JAPAN SUBDUCTION ZONES. Geodynamics & Tectonophysics. 2020;11(4):743-755. (In Russ.) https://doi.org/10.5800/GT-2020-11-4-0504