Preview

Geodynamics & Tectonophysics

Advanced search

THE CENOZOIC CRUSTAL STRESS STATE OF MONGOLIA ACCORDING TO GEOLOGICAL AND STRUCTURAL DATA (REVIEW)

https://doi.org/10.5800/GT-2020-11-4-0503

Abstract

This article gives a chronological review of the main published research results concerning the Cenozoic crustal stress-strain state in Mongolia and adjacent territories. The studies commenced in the southern Baikal rift zone in the 1970s and were extended further southwards to cover mobile regions neighbouring the Siberian platform. Geological, structural and morphostructural data were collected and analysed to define the crustal stress types and spatial characteristics.
The authors have consolidated their reconstructions of the crustal stress-strain state of Mongolia, which were based on tectonic fracturing data and displacements along fractures in fault zones active in the Cenozoic. We consolidated a database of reconstructed stress tensors, which now contains more than 750+ solutions. The Late Cenozoic stress field was mapped. The map shows domains differing in types of the paleostress state of the crust. The reconstructions were compared to our calculations of the present-day crustal stress state, which were based on earthquake focal mechanisms, and to calculations by other authors. At the Late Cenozoic and current stages, the maximum horizontal compression axis (SHmax) has varying orientations, from submeridional (Western Mongolia) to NE and ENE (Eastern Mongolia). The role of compression increases from the northern domains, where the reconstructions show shear and transtension, to the southern domains with prevailing transpression and compression. Regular changes occur in the stress state and rupture parageneses along the largest latitudinal faults, North Khangai and Dolinoozersky; such changes are related to left-lateral strike-slip faulting.
We analysed the sequence of the occurrence of stress fields differing in types and spatial characteristics, and revealed the main regularities in the evolution of the crustal stress-strain state in time. In the Cenozoic history of crust deformation in Mongolia, we can distinguish several episodes that differ in the dominant impacts of various tectonic force sources or combinations of such impacts. At the beginning of the Cenozoic, tectonic structures developed mainly under the influence of the interaction of East Asia and the Pacific Plate, which was manifested in the southeastern domains of the study area. The long-term SE-trending asthenospheric flow caused crustal stretching, which initiated the formation of tectonic structures comprising the Baikal rift system. Starting from the Pliocene, crustal stretching took place in combination with NNE compression caused by the India–Eurasia convergence. As a result, shearing occurred along the large faults. At this background, the Khangai and Khentei uplifts (including crust extension zones at their crests) are large structures that developed due to the dynamic effect of local mantle anomalies.

About the Authors

V. A. Sankov
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Science
Russian Federation
128 Lermontov St, Irkutsk 664033


A. V. Parfeevets
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Science
Russian Federation
128 Lermontov St, Irkutsk 664033


References

1. Arzhannikova A.V., Arzhannikov S.G., 2005. Neotectonic Deformation in the Southwestern Siberian Craton. Russian Geology and Geophysics 46 (3), 273–279 (in Russian)

2. Arzhannikova A.V., Arzhannikov S.G., Jolivet M., Chauvet A., Vassalo R., 2011a. Morphotectonic Analysis of Pliocene-Quaternary Deformations in the Southeast of the Eastern Sayan. Geotectonics 45 (2), 142–156. https://doi.org/10.1134/S001685211101002X.

3. Arzhannikova A., Arzhannikov S., Jolivet M., Vassallo R., Chauvet A., 2011b. Pliocene to Quaternary Deformation in South East Sayan (Siberia): Initiation of the Tertiary Compressive Phase in the Southern Termination of the Baikal Rift System. Journal of Asian Earth Sciences 40 (2), 581–594. https://doi.org/10.1016/j.jseaes.2010.10.011.

4. Arzhannikova A., Larroque C., Ritz J.-F., Déverchère J., Stéphan J.F., Arjannikov S., Sankov V., 2004. Geometry and Kinematics of Recent Deformation in the Mondy–Tunka Area (South-Westernmost Baikal Rift Zone, Mongolia–Siberia). Terra Nova 16 (55), 265–272. https://doi.org/10.1111/j.1365-3121.2004.00565.x.

5. Arzhannikova A.V., Melnikova V.I., Radziminovich N.A., 2007. Late Quaternary and Current Deformation in the Western Tunka System of Basins: Evidence from Structural Geomorphology and Seismology. Russian Geology and Geophysics 48 (4) 305–311. https://doi.org/10.1016/j.rgg.2007.03.001.

6. Badarch G., Cunningham W.D., Windley B.F., 2002. A New Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences 21 (1), 87–110. https://doi.org/10.1016/S1367-9120(02)00017-2.

7. Bayasgalan A., Jackson J.A., 1999. A Re-Assessment of the Faulting in the 1967 Mogod Earthquakes in Mongolia. Geophysical Journal International 138 (3), 784–800, http://dx.doi.org/10.1046/j.1365-246x.1999.00907.x.

8. Bayasgalan A., Jackson J., Ritz J.-F., Carretier S., 1999. Field Examples of Strike-Slip Fault Terminations in Mongolia and Their Tectonic Significance. Tectonics 18 (3), 394–411. http://dx.doi.org/10.1029/1999TC900007.

9. Cheremnykh A.V., 2010. Internal Structures of Fault Zones in the Priolkhonie and Evolution of the State of Stresses of the Upper Crust of the Baikal Rift. Geodynamics & Tectonophysics 1 (3), 273–284 (in Russian) https://doi.org/10.5800/GT-2010-1-3-0021.

10. Cheremnykh A.V., 2015. Faults of the Central Baikal Region: Results of Structural-Paragenetic Analysis. Bulletin of Saint Petersburg State University 7 (2), 59–72 (in Russian)

11. Cheremnykh A.V., 2018. Parageneses of Fractures in Large Fault Zones of West Transbaikalia. Geodynamics & Tectonophysics 9 (3), 889–908 (in Russian) https://doi.org/10.5800/GT-2018-9-3-0375.

12. Cheremnykh A.V., Cheremnykh A.S., Bobrov A.A., 2018. Faults in the Baikal Region: Morphostructural and Structure-Genetic Features (Case Study of the Buguldeika Fault Junction). Russian Geology and Geophysics. 2018. Т. 59. № 9. С. 1100–1108. https://doi.org/10.1016/j.rgg.2018.08.004.

13. Cunningham D., 2013. Mountain Building Processes in Intracontinental Oblique Deformation Belts: Lessons from the Gobi Corridor, Central Asia. Journal of Structural Geology 46, 255–282. http://dx.doi.org/10.1016/j.jsg.2012.08.010.

14. Cunningham W.D., 2001. Cenozoic Normal Faulting and Regional Doming in the Southern Hangay Region, Central Mongolia: Implications for the Origin of the Baikal Rift Province. Tectonophysics 331 (4), 389–411. http://dx.doi.org/10.1016/S0040-1951(00)00228-6.

15. Cunningham W.D., Windley B.F., Dorjnamjaa D., Badamgarov J., Saandar M., 1996. Late Cenozoic Transpression in Southwestern Mongolia and the Gobi Altai – Tien Shan Connection. Earth and Planetary Science Letters 140 (1–4), 67–81. http://dx.doi.org/10.1016/0012-821X(96)00048-9.

16. De Grave J., Buslov M.M., Van Den Haute P., 2007. Distant Effects of India-Eurasia Convergence and Mesozoic Intracontinental Deformation in Central Asia: Constraints from Apatite Fission-Track Thermochronology. Journal of Asian Earth Sciences 29 (2–3), 188–204. http://dx.doi.org/10.1016/j.jseaes.2006.03.001.

17. Dehandschutter B., Vysotsky E., Delvaux D., Klerkx J., Buslov M.M., Seleznev V.S., De Batiste M., 2002. Structural Evolution of the Teletsk Graben (Russian Altai). Tectonophysics 351, 139–167. https://doi.org/10.1016/S0040-1951(02)00129-4.

18. Delvaux D., 1993. The TENSOR Programm for Reconstruction: Examples from East African and the Baikal Rift Systems. Terra Nova 5 (Abstr. Suppl. 1), 216.

19. Delvaux D., 2012. Release of Program Win-Tensor 4.0 for Tectonic Stress Inversion: Statistical Expression of Stress Parameters. Geophysical Research Abstracts 14, EGU2012-5899. Available from: https://meetingorganizer.copernicus.org/EGU2012/EGU2012-5899.pdf.

20. Delvaux D., Cloetingh S., Beekman F., Sokoutis D., Burov E., Buslov M.M., Abdrakhmatov K.E., 2013. Basin Evolution in a Folding Lithosphere: Altai-Sayan and Tien Shan Belts in Central Asia. Tectonophysics 602, 194–222. https://doi.org/10.1016/j.tecto.2013.01.010.

21. Delvaux D., Moyes R., Stapel G., Petit C., Levi K., Miroshnitchenko A., Ruzhich V., Sankov V., 1997. Paleostress Reconstruction and Geodynamics of the Baikal Region, Central Asia. Part II: Cenozoic Rifting. Tectonophysics 282, 1–38. https://doi.org/10.1016/S0040-1951(97)00210-2.

22. Delvaux D., Tenissen K., Van der Meyer R., Berzin N.A., 1995. Dynamics of Formation and Paleostress during the Formation of the Chuya-Kurai Depression in Gorny Altai: Tectonic and Climatic Control. Russian Geology and Geophysics 36 (10), 31–51 (in Russian)

23. Devyatkin E.V., 1981. Cenozoic of Inner Asia (Stratigraphy, Geochronology, Correlation). Nauka, Moscow, 196 p. (in Russian)

24. Dobretsov N.L., Ignatovich V.I. (Eds), 1989. Geology and Ore Content of East Sayan Region. Nauka, Novosibirsk, 127 p. (in Russian)

25. Dzhurik V.I., Dugarmaa T. (Eds), 2004. Complex Geophysical and Seismological Investigations in Mongolia. Ulaanbaatar–Irkutsk: RCAG MAN, 314 p.

26. Fedotov A., Sankov A., De Batist M., Kazansky A., Parfeevets A., Miroshnitchenko A., Pouls T., 2006. Chronology of the Baikal Rift System. Eos 87 (25), 246–250. https://doi.org/10.1029/2006EO250005.

27. Florensov N.A. (Ed.), 1974. History of Relief Genesis in Siberia and Far East: Highlands of Pribaikalie and Zabaikalie. Nauka, Moscow, 359 p. (in Russian)

28. Gol’din S.V., Kuchai O.A., 2007. Seismic Strain in the Altai-Sayan Active Seismic Area and Elements of Collisional Geodynamics. Russian Geology and Geophysics 48 (7), 536–557. http://dx.doi.org/10.1016/j.rgg.2007.06.005.

29. Gzovsky M.V., 1975. Fundamentals of Tectonophysics. Nauka, Moscow, 536 p. (in Russian)

30. Jolivet M., De Boisgrollier T., Petit C., Fournier M., Sankov V.A., Ringenbach J.-C., Byzov L., Miroshnichenko A.I., Kovalenko S.N., Anisimova S.V., 2009. How Old Is the Baikal Rift Zone? Insight from Apatite Fission Track Thermochronology. Tectonics 28 (3). http://dx.doi.org/10.1029/2008TC002404.

31. Jolivet M., Ritz J.-F., Vassallo R., Larroque C., Braucher R., Todbileg M., Chauvet A., Sue C., Arnaud N., De Vicente R., Arzhanikova A., Arzhanikov S., 2007. Mongolian Summits: An Uplifted, Flat, Old but Still Preserved Erosion Surface. Geology 35 (10), 871–874. http://dx.doi.org/10.1130/G23758A.1.

32. Levi K.G., 2007. New Neotectonic Map of the Northeastern Sector of Asia. In: Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (From Ocean to Continent). Materials of the All-Russia Scientific Meeting (October 9–14, 2007). Vol. 1. Issue 5. IEC SB RAS, Irkutsk, p. 136–139 (in Russian)

33. Levi K.G., Miroshnitchenko A.I., Parfeevets A.V., Sankov V.A., Lomborinchen R., Khosbayar P., 2004. Active Faults and Stress Field of Mongolia. In: V.I. Dzhurik, T. Dugarmaa (Eds), Complex Geophysical and Seismological Investigations in Mongolia. Ulaanbaatar–Irkutsk: RCAG MAN, 88–103.

34. Logatchev N.A., Zorin Yu.A., 1987. Evidence and Causes of the Two-Stage Development of the Baikal Rift. Tectonophysics 143 (1–3), 225–234. https://doi.org/10.1016/0040-1951(87)90092-8.

35. Lunina O.V., Gladkov A.S., 2004. Fault Structure of the Tunka Rift as a Reflection of Oblique Extension. Doklady Earth Sciences 398 (7), 928–930 (in Russian)

36. Lunina O.V., Gladkov A.S., 2009. Fault-Block Structure and State of Stress in the Earth’s Crust of the Gusinoozersky Basin and the Adjacent Territory, Western Transbaikal Region. Geotectonics 43 (1), 67–84. https://doi.org/10.1134/S0016852109010051.

37. Lunina O.V., Gladkov A.S., Nevedrova N.N., 2009. Rift Basins in Pribaikal’e: Tectonic Structure and Development History. GEO, Novosibirsk, 316 p. (in Russian)

38. Nikolaev P.N., 1977. Methods of Statistical Analysis of Fractures and Reconstruction of Tectonic Stresses. Proceedings of Higher Educational Establishments. Geology and Exploration 12, 103–115 (in Russian)

39. Nikolaeva T.V., Shuvalov V.F., 1969. The Main Stages of Sedimentation and Relief Development in Central Mongolia in the Mesozoic and Cenozoic. Bulletin of Leningrad State University 18 (3), 17–21 (in Russian)

40. Parfeevets A.V., Sankov V.A., 2006. Stress State of the Crust and Geodynamics of the Southwestern Part of the Baikal Rift System. GEO, Novosibirsk, 151 p. (in Russian)

41. Parfeevets A.V., Sankov V.A., 2009. Active Faulting and Crustal Stress State in the Transition Zone from Riftogenic to Strike-Slip Structures (Northern Mongolia). In: Faulting and Seismicity in the Lithosphere: Tectonophysical Concepts and Consequences. Proceedings of the All-Russia Meeting (August 18–21, 2009). Vol. 2. Irkutsk, p. 110–112 (in Russian)

42. Parfeevets A.V., Sankov V.A., 2010. Late Cenozoic Fields of the Tectonic Stresses in Western and Central Mongolia. Izvestiya, Physics of the Solid Earth 46 (5), 367–378. https://doi.org/10.1134/S1069351310050010.

43. Parfeevets A.V., Sankov V.A., 2012. Late Cenozoic Tectonic Stress Fields of the Mongolian Microplate. Comptes Rendus Geoscience 344 (3–4), 227–238. https://doi.org/10.1016/j.crte.2011.09.009.

44. Parfeevets A.V., Sankov V.A., 2013. Paragenesis of Late Cenozoic Structures and the Tectonic Stress Field in the Zone of the North Khangai Strike-Slip Fault (Northern Mongolia). In: Continental Rifting and Accompanying Processes. Proceedings of the Second All-Russia Symposium with International Participation, and Youth Scientific School Dedicated to the Memory of Academicians N.A. Logachev and E.E. Milanovsky (August 20–23, 2013). Vol. 1. Irkutsk, p. 12–16 (in Russian)

45. Parfeevets A.V., Sankov V.A., 2018. Geodynamic Conditions for Cenozoic Activation of Tectonic Structures in Southeastern Mongolia. Geodynamics & Tectonophysics 9 (3), 855–888 (in Russian) . https://doi.org/10.5800/GT-2018-9-3-0374.

46. Parfeevets A.V., Sankov V.A., Demberel S., 2016. Active Faults in the Basin of the Selenga, Orkhon and Tola Rivers (Northern Mongolia). Geography and Natural Resources 6, 86–92 (in Russian) https://doi.org/10.21782/GIPR0206-1619-2016-6(86-92).

47. Parfeevets A.V., Sankov V.A., Miroshnichenko A.I., Lukhnev A.V., 2002. Evolution of the Crustal Stress State of the Mongolia–Baikal Mobile Belt. Russian Journal of Pacific Geology 21 (1), 14–28 (in Russian)

48. Petit C., Déverchère J., Houdry F., Sankov V.A., Melnikova V.I., Delvaux D., 1996. Present-Day Stress Field Changes along the Baikal Rift and Tectonic Implication. Tectonics 15 (6), 1171–1191. http://dx.doi.org/10.1029/96TC00624.

49. Radziminovich N.A., Bayar G., Miroshnichenko A.I., Demberel S., Ulziibat M., Ganzorig D., Lukhnev A.V., 2016. Focal Mechanisms of Earthquakes and Stress Field of the Crust in Mongolia and Its Surroundings. Geodynamics & Tectonophysics 7 (1), 23–38 (in Russian) https://doi.org/10.5800/GT-2016-7-1-0195.

50. Rasskazov S.V., 1993. Magmatism of the Baikal Rift System. Nauka, Novosibirsk, 288 p. (in Russian)

51. Ritz J.-F., Bourlиs D., Brown E.T., Carretier S., Chéry J., Enhtuvshin B., Galsan P., Finkel R.C., Hanks T.C., Kendrick K.J., Philip H., Raisbeck G., Schlupp A., Schwartz D.P., Yiou F., 2003. Late Pleistocene to Holocene Slip Rates for the Gurvan Bulag Thrust Fault (Gobi-Altay, Mongolia) Estimated with 10Be Dates. Journal of Geophysical Research 108 (B3). http://dx.doi.org/10.1029/2001JB000553.

52. Rizza M., Ritz J.-F., Prentice C., Vassallo R., Braucher R., Larroque C., Arzhannikova A., Arzhannikov S., Mahan S., Massault M., Michelot J.-L., Todbileg M., ASTER Team, 2015. Earthquake Geology of the Bulnay Fault (Mongolia). Bulletin of the Seismological Society of America 105 (1), 72–93. http://dx.doi.org/10.1785/0120140119.

53. Ruzhich V.V., 1972. On the Dynamics of Tectonic Development of Pribaikalie in the Cenozoic. Russian Geology and Geophysics 4, 122–126 (in Russian)

54. Ruzhich V.V., 1978. On the Combination of Extension and Compression Stresses in the Baikal Rift. In: N.A. Logachev (Ed.), Tectonics and Seismicity of Continental Rift Zones. Nauka, Moscow, p. 27–32 (in Russian)

55. Ruzhich V.V., Khilko S.A., 1985. Some Problems of the Modern and Present-Day Geodynamics of the Khubsugul Region. Proceedings of the International Conference on the Results of the Soviet–Mongolian Complex Khubsugul Expedition. Irkutsk, p. 20–21 (in Russian)

56. Ruzhich V.V., Sherman S.I., Tarasevich S.I., 1972. New Data on Thrust Faults in the Southwestern Part of the Baikal Rift Zone. Doklady of the USSR Academy of Sciences 205 (4), 920–923 (in Russian)

57. Ryazanov G.V., 1978. Stress Field and Conditions for the Formation of Structures in the Southwestern Flank of the Baikal Rift Zone. Doklady of the USSR Academy of Sciences 243 (1), 183–186 (in Russian)

58. Sankov V.A., Dneprovsky Yu.I., Kovalenko S.N., Bornyakov S.A., Gileva N.G., Gorbunova N.G., 1991. Faults and Seismicity of the Northern Muya Geodynamic Polygon. Nauka, Novosibirsk, 111 p. (in Russian)

59. Sankov V.A., Miroshnichenko A.I., Levi K.G., Lukhnev A.V., Delvaux D., 1996. Reconstruction of the Stages of Development of the Stress State of the Earth’s Crust of the Baikal Rift. Geophysical Research in Eastern Siberia at the Turn of the XXI Century. Nauka, Novosibirsk, 126–132 (in Russian)

60. Sankov V.A., Miroshnichenko A.I., Levi K.G., Lukhnev A.V., Melnikov A.I., Delvaux D., 1997. Cenozoic Tectonic Stress Field Evolution in the Baikal Rift Zone. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 21 (2), 435–455.

61. Sankov V.A., Miroshnichenko A.I., Parfeevets A.V., Arzhannikova A.V., 2003. New Data on Late Cenozoic Tectonic Stress Fields in the Khubsugul Region, Mongolia. Doklady Earth Sciences 388 (4), 526–529 (in Russian)

62. Sankov V.A., Miroshnichenko A.I., Parfeevets A.V., Arzhannikova A.V., Lukhnev A.V., 2004. Late Cenozoic State of Stress in the Earth’s Crust of the Khubsugul Region (Northern Mongolia): Field and Experimental Evidence. Geotectonics 2, 78–90 (in Russian)

63. Sankov V.A., Parfeevets A.V., 2005. Late Cenozoic Stressed State of Active Fault Zones in Western Mongolia and Tuva. Doklady Earth Sciences 403 (6), 852–855.

64. Sankov V.A., Parfeevets A.V., Lukhnev A.V., Miroshnichenko A.I., Ashurkov S.V., 2011. Late Cenozoic Geodynamics and Mechanical Coupling of Crustal and Upper Mantle Deformations in the Mongolia-Siberia Mobile Area. Geotectonics 45, 378. http://dx.doi.org/10.1134/S0016852111050049.

65. Sankov V.A., Parfeevets A.V., Miroshnichenko A.I., Sankov A.V., 2017. Active Faults and the Late Cenozoic Stress State of the Central Mongolia. In: D.P. Gladkochub (Ed.), Hazardous Geological Processes and Forecasting of Natural Emergencies in the Territory of Central Mongolia. ISU Publishing House, Irkutsk, p. 104–129 (in Russian)

66. Sankov V.A., Parfeevets A.V., Miroshnichenko A.I., Sankov A.V., Bayasgalan A., Battogtokh D., 2015. Active Faults Paragenesis and the State of Crustal Stresses in the Late Cenozoic in Central Mongolia. Geodynamics & Tectonophysics 6 (4), 491–518 (in Russian) http://dx.doi.org/10.5800/GT-2015-6-4-0191.

67. Seminsky K.Zh., 1994. Principles and Stages of Special Mapping of the Fault-Block Structure on the Basis of Fracturing Studies. Russian Geology and Geophysics 9, 112–130 (in Russian)

68. Seminsky K.Zh., 2003. Internal Structure of Continental Fault Zones. Tectonophysical Aspect. GEO, Novosibirsk, 244 p. (in Russian)

69. Seminsky K.Zh., Cheremnykh A.V., 2011. Jointing Patterns and Stress Tensors in Cenozoic Sediments of the Baikal Rift: Development of the Structural-Genetic Approach. Russian Geology and Geophysics 52 (3), 450–469 (in Russian)

70. Seminsky K.Zh., Demberel S., Bobrov A.A., Burzunova Yu.P., Mongonsuren D., Ulziybat M., Ganzorig D., 2017. Assessment of the current activity of faults in Central Mongolia on the Basis of the Tectonophysical Analysis of Emanation, Seismological, Geological and Structural Data. In: D.P. Gladkochub (Ed.), Hazardous Geological Processes and Forecasting of Natural Emergencies in the Territory of Central Mongolia. ISU Publishing House, Irkutsk, p. 155–209 (in Russian)

71. Seminsky K.Zh., Kozhevnikov N.O., Cheremnykh A.V., Pospeeva E.V., Bobrov A.A., Olenchenko V.V., Tugarina M.A., Potapov V.V., Burzunova Yu.P., 2012. Interblock Zones of the Northwestern Baikal Rift: Results of Geological and Geophysical Studies along the Bayandai Village – Cape Krestovskii Profile. Russian Geology and Geophysics 53 (2), 250–269 (in Russian)

72. Seminsky K.Zh., Kozhevnikov N.O., Cheremnykh A.V., Pospeeva E.V., Bobrov A.A., Olenchenko V.V., Tugarina M.A., Potapov V.V., Zaripov R. M., Cheremnykh A.S., 2013. Baikal Rift in the Zone-Block Structure of the Lithosphere of Central Asia. In: Continental Rifting and Accompanying Processes. Proceedings of the Second All-Russia Symposium with International Participation, and Youth Scientific School Dedicated to the Memory of Academicians N.A. Logachev and E.E. Milanovsky (August 20–23, 2013). Vol. 1. Irkutsk, p. 64–69 (in Russian)

73. Sherman S.I., Dneprovsky Yu.I., 1986. New Map of Stress Fields of the Baikal Rift Zone Based on Geological and Structural Data. Doklady of the USSR Academy of Sciences 287 (4), 943–947 (in Russian)

74. Sherman S.I., Dneprovsky Yu.I., 1989. Stress Fields of the Earth’s Crust and Geological and Structural Methods for Their Study. Nauka, Novosibirsk, 158 p. (in Russian)

75. Sherman S.I., Medvedev M.E., Ruzhich V.V., Kiselev A.I., Shmotov A.P., 1973. Tectonics and Volcanism in the Southwestern Part of the Baikal Rift Zone. Nauka, Novosibirsk, 134 p. (in Russian)

76. Smekalin O.P., Imaev V.S., Chipizubov A.V., 2013. Paleoseismic Studies of the Hustai Fault Zone (Northern Mongolia). Russian Geology and Geophysics 54 (7), 724–733. http://dx.doi.org/10.1016/j.rgg.2013.06.007.

77. Solonenko V.P., Florensov N.A. (Eds), 1985. Earthquakes and Fundamentals of Seismic Risk Zoning of Mongolia. Nauka, Moscow, 224 p. (in Russian)

78. Trifonov V.G., Makarov V.I., 1988. Active Faults. In: P.N. Kropotkin (Ed.), Neotectonics and Modern Geodynamics of Mobile Belts. Nauka, Moscow, 239–272 (in Russian)

79. Trifonov V.G., Soboleva O.V., Trifonov S.V., Vostrikov G.A., 2002. Modern Geodynamics of Alpine-Himalayan Collision Belt. GEOS, Moscow, 225 p. (in Russian)

80. Walker R.T., Molor E., Fox M., Bayasgalan A., 2008. Active Tectonics of an Apparently Aseismic Region: Distributed Active Strike-Slip Faulting in the Hangay Mountains of Central Mongolia. Geophysical Journal International 174 (3), 1121–1137. https://doi.org/10.1111/j.1365-246X.2008.03874.x.

81. Walker R.T., Nissen E., Molor E., Bayasgalan A., 2007. Reinterpretation of the Active Faulting in Central Mongolia. Geology 35 (8), 759–762. http://dx.doi.org/10.1130/G23716A.1.

82. Yanshin A.L. (Ed.), 1975. Mesozoic and Cenozoic Tectonics and Magmatism of Mongolia. Proceedings of the Joint Soviet-Mongolian Geological Expedition. Iss. 11. Nauka, Moscow, 308 p. (in Russian)


Review

For citations:


Sankov V.A., Parfeevets A.V. THE CENOZOIC CRUSTAL STRESS STATE OF MONGOLIA ACCORDING TO GEOLOGICAL AND STRUCTURAL DATA (REVIEW). Geodynamics & Tectonophysics. 2020;11(4):722-742. (In Russ.) https://doi.org/10.5800/GT-2020-11-4-0503

Views: 849


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)