Preview

Геодинамика и тектонофизика

Расширенный поиск

ДЛИННОПЕРИОДНЫЕ ИЗМЕНЕНИЯ В СООТНОШЕНИИ ПРОЦЕССОВ ТЕКТОНО-ПЛИТНОГО И МАНТИЙНО-ПЛЮМОВОГО ПРОИСХОЖДЕНИЯ В ДОКЕМБРИИ

https://doi.org/10.5800/GT-2016-7-2-0203

Аннотация

Как ни парадоксально, в списках главных свидетельств обстановок как тектоники плит, так и тектоники плюмов отсутствуют любые упоминания о породах, подвергшихся метаморфизму при высоких параметрах, таких как гранулиты, амфиболиты, высокотемпературные эклогиты. Между тем гранулито-гнейсовые пояса и ареалы, которые включают такие породы, имеют региональное распространение как в докембрии, так и в фанерозое. Возникновение и эволюция гранулито-гнейсовых поясов связаны с мантийно-плюмовой активностью, которая выражается в интенсивном прогреве континентальной коры, внутриплитном магматизме, формировании рифтогенных депрессий, заполнявшихся осадками, ювенильными лавами и отложениями пирокластических потоков, в метаморфизме пород нижней и средней коры в условиях гранулитовой и высокотемпературной амфиболитовой фации, который распространяется также и на породы, заполнившие рифтогенные депрессии. Гранулито-гнейсовые комплексы Восточно-Европейского кратона представляют собой один из главных компонентов обширных овальных внутриконтинентальных тектонических структур регионального или континентального уровня. Благодаря вовлечению в обсуждение гранулито-гнейсовых комплексов Восточной Европы, Северной и Южной Америки, Африки, Индии, Китая и Австралии стала очевидной необходимость значительного пересмотра существующих взглядов на соотношения процессов тектоно-плитного и тектоно-плюмового типа, равно как и процессов сборки и распада суперконтинентов, в геологической истории. Показано, что Восточно-Европейский и Северо-Американский кратоны являются фрагментами долгоживущего суперконтинента Лавроскандия. После его возникновения около 2.8 млрд лет назад кора этого суперконтинента эволюционировала при воздействии последовательности мощных плюмов (суперплюмов) вплоть до ~0.85 млрд лет. За это время Лавроскандия неоднократно подвергалась рифтингу, частичному расколу и последующему восстановлению целостности континента. Процессы тектоно-плитного типа (рифтинг с переходом в спрединг с последующим закрытием короткоживущего океана с участием субдукции) во внутренней области Лавроскандии контролировались суперплюмами. Переоценка природы гранулито-гнейсовых комплексов привела к ряду принципиально новых заключений: о существенно более значительной, чем предполагалось раньше, роли мантийно-плюмовых событий в приросте ювенильной континентальной коры, особенно в неоархее – протерозое, о существовании суперконтинента Лавроскандия с ~2.85 до 0.85 млрд лет, о ведущей роли мантийных плюмов во взаимодействии тектоники плит и тектоники плюмов в неоархейской – протерозойской истории Лавроскандии и, возможно, в истории континентальной коры в целом. Мы предполагаем, что эволюция геодинамических обстановок в истории корообразования может быть представлена в виде спиральной последовательности: взаимодействие мантийно-плюмовых процессов и эмбриональной тектоники плит в палеомезоархее (~3.8–2.8 млрд лет) → плюм-тектоника и локально проявленная тектоника плит, инициированная плюмами (~2.80–0.55 млрд лет) → фанерозойская тектоника плит при редуцированной роли мантийных плюмов.

Об авторах

М. В. Минц
Геологический институт РАН
Россия

докт. геол.-мин. наук, зав. лабораторией,

119017, Москва, Пыжевский пер., 7



П. Г. Эрикссон
Университет Претории
Южно-Африканская Республика

профессор, Геологический отдел,

Претория 0002



Список литературы

1. Abbott D.H., Isley A.E., 2002. The intensity, occurrence, and duration of superplume events and eras over geological time. Journal of Geodynamics 34 (2), 265–307. http://dx.doi.org/10.1016/S0264-3707(02)00024-8.

2. All T., Flodén T., Puura V., 2006. A complex model of Mesoproterozoic sedimentary and igneous suites in a graben setting north of Gotland, Baltic Sea. GFF 128 (1), 53–63. http://dx.doi.org/10.1080/11035890601281053.

3. Allen P.A., Eriksson P.G., Alkmim F.F., Betts P.G., Catuneanu O., Mazumder R., Meng Q., Young G.M., 2015. Chapter 2. Classification of basins, with special reference to Proterozoic examples. In: R. Mazumder, P.G. Eriksson (Eds.), Precambrian basins of India: stratigraphic and tectonic context. Geological Society, London, Memoirs, vol. 43, p. 5–28. http://dx.doi.org/10.1144/M43.2.

4. Amelin Yu.V., Heaman L.M., Semenov V.S., 1995. U-Pb geochronology of layered mafic intrusions in the eastern Baltic Shield: implication for the timing and duration of the Paleoproterozoic continental rifting. Precambrian Research 75 (1–2), 31–46. http://dx.doi.org/10.1016/0301-9268(95)00015-W.

5. Andersson J., Bingen B., Cornell D., Johansson L., Söderlund U., Möller C., 2008. The Sveconorwegian orogen of southern Scandinavia: setting, petrology and geochronology of polymetamorphic high-grade terranes. 33 IGC, excursion No 51, August 2–5, 2008. Oslo, 33 IGC, 83 p.

6. Ansdell K.M., Lucas S.B., Connors K., Stern R., 1995. Kisseynew metasedimentary gneiss belt, Trans-Hudson orogen (Canada): Back-arc origin and collisional inversion. Geology 23 (11), 1039–1043. http://dx.doi.org/10.1130/0091-7613(1995)023<1039:KMGBTH>2.3.CO;2.

7. Årebäck H., Stigh J., 2000. The nature and origin of an anorthosite associated ilmenite-rich leuconorite, Hakefjorden Complex, south-west Sweden. Lithos 51 (3), 247–267. http://dx.doi.org/10.1016/S0024-4937(99)00070-5.

8. Arndt N.T., Coltice N., Helmstaedt H., Gregoire M., 2009. Origin of Archean subcontinental lithospheric mantle: Some petrological constraints. Lithos 109 (1–2), 61–71. http://dx.doi.org/10.1016/j.lithos.2008.10.019.

9. Arndt N., Davaille A., 2013. Episodic Earth evolution. Tectonophysics 609, 661–674. http://dx.doi.org/10.1016/j.tecto.2013.07.002.

10. Asami M., Suzuki K., Grew E.S., 2002. Chemical Th-U-total Pb dating by electron microprobe analysis of monazite, xenotime and zircon from the Archaean Napier Complex, East Antarctica: evidence for ultra-high-temperature metamorphism at 2400 Ma. Precambrian Research 114 (3–4), 249–275. http://dx.doi.org/10.1016/S0301-9268(01)00228-5.

11. Ashwal L.D., 1993. Anorthosites. Minerals and Rocks Series, vol. 21. Springer, Berlin, 422 p.

12. Ashwal L.D., 2010. The temporality of anorthosites. Canadian Mineralogist 48 (4), 711–728. http://dx.doi.org/10.3749/canmin.48.4.711.

13. Ashwal L.D., Myers J.C., 1994. Chapter 8. Archean anorthosites. In: K.C. Condie (Ed.), Archean crustal evolution. Developments in Precambrian Geology, vol. 11. Elsevier, Amsterdam, p. 315–355. http://dx.doi.org/10.1016/S0166-2635(08)70226-3.

14. Aspler L.B., Chiarenzelli J.R., 1998. Two Neoarchean supercontinents? Evidence from the Paleoproterozoic. Sedimentary Geology 120 (1–4), 75–104. http://dx.doi.org/10.1016/S0037-0738(98)00028-1.

15. Avakyan K.H., 1992. Geology and Petrology of the Archean Central Kola Granulite-Gneiss Terrain. Nauka, Moscow, 168 p. (in Russian) [Авакян К.Х. Геология и петрология Центрально-Кольской гранулито-гнейсовой области архея. М.: Наука, 1992. 168 с.].

16. Baadsgaard H., Nutman A.P., Bridgwater D., McGregor V.R., Rosing M., Allaart J.H., 1984. The zircon geochronology of the Akilia association and the Isua supracrustal belt, West Greenland. Earth and Planetary Science Letters 68 (2), 221–228. http://dx.doi.org/10.1016/0012-821X(84)90154-7.

17. Baird D.J., Nelson K.D., Knapp J.H., Walters J.J., Brown L.D., 1996. Crustal structure and evolution of the Trans-Hudson orogen: results from seismic reflection profiling. Tectonics 15 (2), 416–426. http://dx.doi.org/10.1029/95TC02425.

18. Balagansky V.V., Timmerman M.J., Kislitsyn R.V., Daly J.S., Balashov Y.A., Hannibal D.F., Sherstennikov O.G., Ryungenen G., 1998. Isotopic ages of rocks of the Kolvitsa belt and Umba block (south-eastern branch of the Lapland granulite belt), Kola Peninsula. Proceedings of the Murmansk State Technical University 1 (3), 19–32 (in Rissian) [Балаганский В.В., Тиммерман М.Я., Кислицын Р.В., Дэйли Дж.С., Балашов Ю.А., Ганнибал Л.Ф., Шерстенникова О.Г., Рюнгенен Г.И. Изотопный возраст пород Колвицкого пояса и Умбинского блока (юго-восточная ветвь лапландского гранулитового пояса), Кольский полуостров // Вестник Мурманского государственного технического университета. 1998. Т. 1. №. 3. С. 19–32].

19. Balagansky V.V., Timmerman M.J., Kozlova N.Ye., Kislitsyn R.V., 2001. A 2.44 Ga syn-tectonic mafic dyke swarm in the Kolvitsa Belt, Kola Peninsula, Russia: implications for the early Palaeoproterozoic tectonics in the north-eastern Fennoscandian Shield. Precambrian Research 105 (2–4) 269–287. http://dx.doi.org/10.1016/S0301-9268(00)00115-7.

20. Baldwin J.A., Bowring S.A., Williams M.L., 2003. Petrological and geochronological constraints on high pressure, high temperature metamorphism in the Snowbird tectonic zone, Canada. Journal of Metamorphic Geology 21 (1), 81–98. http://dx.doi.org/10.1046/j.1525-1314.2003.00413.x.

21. Baldwin J.A., Bowring S.A., Williams M.L., Williams I.S., 2004. Eclogites of the Snowbird tectonic zone: petrological and U-Pb geochronological evidence for Paleoproterozoic high-pressure metamorphism in the western Canadian Shield. Contributions to Mineralogy and Petrology 147 (5), 528–548. http://dx.doi.org/10.1007/s00410-004-0572-4.

22. Baltybaev Sh.K., Levchenkov O.A., Berezhnaya N.G., Levskii L.K., Makeev A.F., Yakovleva S.Z., 2004. Age and duration of Svecofennian plutono-metamorphic activity in the Ladoga area, Southeastern Baltic Shield. Petrology 12 (4), 330–347.

23. Barbosa J.S.F., Nicollet C., Leite C., Kienast J.R., Fuck R.A., Macedo E.P., 2006. Hercynite-quartz-bearing granulites from Brejões Dome area, Jequié Block, Bahia, Brazil: influence of charnockite intrusion on granulite facies metamorphism. Lithos 92 (3–4), 537–556. http://dx.doi.org/10.1016/j.lithos.2006.03.064.

24. Barbosa J.S.F., Sabaté P., 2002. Geological features and the Paleoproterozoic collision of four Archean crustal segments of the São Francisco Craton, Bahia, Brazil. A synthesis. Anais da Academia Brasileira de Ciências 74 (2), 343–359. http://dx.doi.org/10.1590/S0001-37652002000200009.

25. Barley M.E., Bekker A., Krapez B., 2005. Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth and Planetary Science Letters 238 (1–2), 156–171. http://dx.doi.org/10.1016/j.epsl.2005.06.062.

26. Barnett P.J., Crabtree D.C., Clarke S.A., 2007. Investigation of the Overburden Signature of the Engagement zone, a Diamond-bearing, Lamprophyric, Heterolithic Breccia, Wawa, Ontario. Ontario Geological Survey, Open File Report 6197, 21 p.

27. Barton J.M. Jr., 1996. The Messina layered intrusion, Limpopo belt, South Africa: an example of in-situ contamination of an Archean anorthosite complex by continental crust. Precambrian Research 78 (1–3), 139–150. http://dx.doi.org/10.1016/0301-9268(95)00074-7.

28. Barton J.M. Jr., Klemd R., Zeh A., 2006. The Limpopo Belt: A result of Archean to Proterozoic, Turkic-type orogenesis? In: W.U. Reimold, R.L. Gibson (Eds.), Processes on the Early Earth. Geological Society of America Special Paper, vol. 405, p. 315–332. http://dx.doi.org/10.1130/2006.2405(16).

29. Barton J.M. Jr., van Reenen D.D., 1992. When was the Limpopo orogeny? Precambrian Research 55 (1–4), 7–16. http://dx.doi.org/10.1016/0301-9268(92)90010-L.

30. Bayanova T.B., 2004. Age of Reference Geological Complexes of the Kola Peninsula and the Duration of Magmatism Processes. Nauka, St.-Petersburg, 174 p. (in Russian) [Баянова Т.Б. Возраст реперных геологических комплексов Кольского региона и длительность процессов магматизма. СПб.: Наука, 2004. 174 с.].

31. Bellefleur G., Calvert A.J., Chouteau M.C., 1998. Crustal geometry of the Abitibi Subprovince, in light of three-dimensional seismic reflector orientations. Canadian Journal of Earth Sciences 35 (5), 569–582. http://dx.doi.org/10.1139/e97-129.

32. Belyatsky B.V., Tikhomirova M.A., Savva E.V., 2000. Age and genesis of Proterozoic Tiksheozero alkaline ultramafic massif (Northern Karelia): results of the Pb-Sr-Nd studies. In: Isotope dating and geological processes: New methods and results: Abstracts of the 1st Russ. Conf. on Isotope Geochronology. GEOS, Moscow, p. 63–65 (in Russian)

33. [Беляцкий Б.В., Тихомирова М., Савва Е.В. Возраст и генезис протерозойского щелочно-ультраосновного Тикшеозерского массива (Северная Карелия): результаты Pb-Sr-Nd изотопных исследований // Изотопное датирование геологических процессов: новые методы и результаты: Тезисы докладов I Российской конференции по изотопной геохронологии. М., 2000. С. 63–65].

34. Bibikova E.V., 1989. U-Pb Geochronology of the Early Stages of Development of Ancient Shields. Nauka, Moscow, 180 p. (in Russian) [Бибикова Е.В. Уран-свинцовая геохронология ранних этапов развития древних щитов. М.: Наука, 1989. 180 с.].

35. Bibikova E.V., Melnikov V.F., Avakyan C.H., 1993. Lapland granulites: Petrochemistry, geochemistry and isotopic age. Petrology 1 (2), 215–234.

36. Bibikova E.V., Skiöld T., Bogdanova S.V., 1996. Age and geodynamic aspects of the oldest rocks in the Precambrian Belomorian Belt of the Baltic (Fennoscandian) Shield. In: T.S. Brewer (Ed.), Precambrian Crustal Evolution in the North Atlantic Region. Geological Society, London, Special Publications, vol. 112, p. 55–67. http://dx.doi.org/10.1144/GSL.SP.1996.112.01.04.

37. Bibikova E.V., Slabunov A.I., Bogdanova A.I., Skiöld T., Stepanov V.S., Borisova E.Yu., 1999. Early magmatism of the Belomorian Mobile Belt, Baltic Shield: lateral zoning and isotopic age. Petrology 7 (2), 123–146.

38. Bibikova E.V., Petrova A., Claesson S., 2005. The temporal evolution of sanukitoids in the Karelian craton, Baltic Shield: An ion microprobe U-Th-Pb isotopic study of zircons. Lithos 79 (1–2), 129–145, http://dx.doi.org/10.1016/j.lithos.2004.05.005.

39. Bickford M.E., Hill B.M., 2007. Does the arc accretion model adequately explain the Paleoproterozoic evolution of southern Laurentia?: An expanded interpretation. Geology 35 (2), 167–170. http://dx.doi.org/10.1130/G23174A.1.

40. Bickford M.E., Mock T.D., Steinhart III W.E., Collerson K.D., Lewry J.F., 2005. Origin of the Archean Sask craton and its extent within the Trans-Hudson orogen: evidence from Pb and Nd isotopic compositions of basement rocks and post-orogenic intrusions. Canadian Journal of Earth Sciences 42 (4), 659–684. http://dx.doi.org/10.1139/e04-064.

41. Blenkinsop T.G., 2011. Archean magmatic granulites, diapirism, and Proterozoic reworking in the northern marginal zone of the Limpopo Belt. In: D.D. van Reenen, J.D. Kramers, S. McCourt, L.L. Perchuk (Eds.), Origin and Evolution of Precambrian High-Grade Gneiss Terranes, with Special Emphasis on the Limpopo Complex of Southern Africa. Geological Society of America Memoir, vol. 207, p. 245–267. http://dx.doi.org/10.1130/2011.1207(13).

42. Bogdanova S.V., 1986. The Crust of the Russian Platform in the Early Precambrian (Exemplified on the Volga-Ural Segment). Nauka, Moscow, 224 p. (in Russian) [Богданова С.В. Земная кора Русской плиты в раннем докембрии (на примере Волго-Уральского сегмента). М.: Наука, 1986. 224 с.].

43. Bogdanova S.V., Bibikova E.V., Postnikov A.V., 1999. A remnant of the Palaeoproterozoic magmatic arc beneath Moscow. In: Yu.V. Kariakin, M.V. Mints (Eds.), Early Precambrian: genesis and evolution of the continental crust (geodynamics, petrology, geochronology, regional geology): Abstracts. GEOS, Moscow, p. 23–24.

44. Bogdanova S.V., Bingen B., Gorbatschev R., Kheraskova T.N., Kozlov V.I., Puchkov V.N., Volozh Yu.A., 2008. The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Research 160 (1–2), 23–45. http://dx.doi.org/10.1016/j.precamres.2007.04.024.

45. Bogdanova S., Gorbatschev R., Garetsky R.G., 2005. EUROPE. East European Craton. In: R.C. Selley, L.R.M. Cocks, I.R. Plimer (Eds.), Encyclopedia of Geology, vol. 2. Elsevier, Amsterdam, p. 34–49. http://dx.doi.org/10.1016/B0-12-369396-9/00426-3.

46. Boggs K.J.E., Corriveau L., 2004. Granulite-facies P-T-t paths and influence of retrofrade cation diffusion during polyphase orogenesis, western Grenville Province, Québec. In: R.P. Tollo, J. McLelland, L. Corriveau, M.J. Bartholomew (Eds.), Proterozoic tectonic evolution of the Grenville orogen in North America. Geological Society of America Memoir, vol. 197, p. 35–64. http://dx.doi.org/10.1130/0-8137-1197-5.35.

47. Bohlar R., Kamber B.S., Moorbath S., Fedo C.M., Whitehouse M.J., 2004. Characterisation of early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters 222 (1), 43–60. http://dx.doi.org/10.1016/j.epsl.2004.02.016.

48. Boshoff R., Van Reenen D.D., Kramers J.D., Smit C.A., Perchuk L.L., Armstrong R., 2006. Geologic history of the central zone of the Limpopo Complex: The West Alldays Area. The Journal of Geology 114 (6), 699–716. http://dx.doi.org/10.1086/507615.

49. Bowring S.A., Williams I.S., 1999. Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contributions to Mineralogy and Petrology 134 (1), 3–16. http://dx.doi.org/10.1007/s004100050465.

50. Bradley D.C., 2011. Secular trends in the geologic record and the supercontinent cycle. Earth-Science Reviews 108 (1–2), 16–33. http://dx.doi.org/10.1016/j.earscirev.2011.05.003.

51. Brandl G., 1992. Geological map of the Limpopo belt and its environs, scale 1:500000. Contribution to “A field workshop on granulites and deep crustal tectonics, 1990”. Geological Survey of South Africa, Pretoria, 2 sheets + legend, Notice 46 p.

52. Bridgwater D., Scott D.J., Balagansky V.V., Timmerman M.J., Marker M., Bushmin S.A., Alexeyev N.L., Daly J.S., 2001. Age and provenance of Early Precambrian metasedimentary rocks in the Lapland–Kola Belt, Russia: evidence from Pb and Nd isotopic data. Terra Nova 13 (1), 32–37. http://dx.doi.org/10.1046/j.1365-3121.2001.00307.x.

53. Brown M., 2007. Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review 49 (3), 193–234. http://dx.doi.org/10.2747/0020-6814.49.3.193.

54. Brown M., 2009. Metamorphic patterns in orogenic systems and the geological record. In: P.A. Cawood, A. Kröner (Eds.), Earth accretionary systems in space and time. Geological Society, London, Special Publications, vol. 318, p. 37–74. http://dx.doi.org/10.1144/SP318.2.

55. Buchan K.L., Mortensen J.K., Card K.D., Percival J.A., 1998. Paleomagnetism and U–Pb geochronology of diabase dyke swarms of Minto block, Superior Province, Quebec, Canada. Canadian Journal Earth Sciences 35 (9), 1054–1069. http://dx.doi.org/10.1139/e98-054.

56. Cadéron S., Trzcienski W.E., Bédard J.H., Goulet N., 2005. An occurrence of sapphirine in the Archean Superior Province, Northern Quebec. The Canadian Mineralogist 43 (1), 463–478. http://dx.doi.org/10.2113/gscanmin.43.1.463.

57. Calvert A.J., Sawyer E.W., Davis W.J., Ludden J.N., 1995. Archaean subduction inferred from seismic images of a mantle suture in the Superior Province. Nature 375 (6533), 670–674. http://dx.doi.org/doi:10.1038/375670a0.

58. Card K.D., 1990. A review of the Superior Province of the Canadian Shield, a product of Archean accretion. Precambrian Research 48 (1–2), 99–156. http://dx.doi.org/10.1016/0301-9268(90)90059-Y.

59. Carlson W.D., Anderson S.D., Mosher S., Davidow J.S., Crawford W.D., Lane E.D., 2007. High-pressure metamorphism in the Texas Grenville orogen: Mesoproterozoic subduction of the southern Laurentian continental margin. International Geology Review 49 (2), 99–119. http://dx.doi.org/10.2747/0020-6814.49.2.99.

60. Carr S.D., Easton R.M., Jamieson R.A., Culshaw N.G., 2000. Geologic transect across the Grenville orogen of Ontario and New York. Canadian Journal Earth Sciences 37 (2–3), 193–216. http://dx.doi.org/10.1139/e99-074.

61. Catuneanu O., 2001. Flexural partitioning of the Late Archaean Witwatersrand foreland system, South Africa. Sedimentary Geology 141–142, 95–112. http://dx.doi.org/10.1016/S0037-0738(01)00070-7.

62. Cates N.L., Mojzsis S.J., 2007. Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Québec. Earth and Planetary Science Letters 255 (1–2), 9–21. http://dx.doi.org/10.1016/j.epsl.2006.11.034.

63. Cawood P.A., Kröner A., Collins W.J., Kusky T.M., Mooney W.D., Windley B.F., 2009. Accretionary orogens through Earth history. In: P.A. Cawood, A. Kröner (Eds.), Earth accretionary systems in space and time. Geological Society, London, Special Publications, vol. 318, p. 1–36. http://dx.doi.org/10.1144/SP318.1.

64. Cawood P.A., Nemchin A.A., Strachan R., Prave T., Krabbendam M., 2007. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. Journal of the Geological Society, London 164 (2), 257–275. http://dx.doi.org/10.1144/0016-76492006-115.

65. Chacko T., Creaser R.A., Poon D., 1994. Spinel + quartz granites and associated metasedimentary enclaves from the Taltson magmatic zone. Alberta, Canada: a view into a root zone of a high temperature S-type granite batholith. Mineralogical Magazine 58A, 161–162.

66. Chacko T., De S.K., Creaser R.A., Muehlenbach K., 2000. Tectonic setting of the Talston magmatic zone at 1.9–2.0 Ga: a granitoid-based perspective. Canadian Journal of Earth Sciences 37 (11), 1597–1609. http://dx.doi.org/10.1139/e00-029.

67. Chekulaev V.P., Arestova N.A., Berezhnaya N.G., Presnyakov S.L., 2009. New Data on the age of the oldest tonalite–trondhjemite association in the Baltic Shield. Stratigraphy and Geological Correlation 17 (2), 230–234. http://dx.doi.org/10.1134/S0869593809020105.

68. Chiarenzelli J., Aspler L., Villeneuve M., Lewry J., 1998. Early Proterozoic evolution of the Saskatchewan Craton and its allochthonous cover, Trans-Hudson Orogen. The Journal of Geology 106 (3), 247–268 http://dx.doi.org/10.1086/516020.

69. Chudy T.C., Zeh A., Gerbes A., Klemd R., Barton J.M., 2008. Palaeoarchaean (3.3 Ga) mafic magmatism and Palaeoproterozoic (2.02 Ga) amphibolite-facies metamorphism in the Central Zone of the Limpopo Belt: New geochronological, petrological and geochemical constraints from metabasic and metapelitic rocks from the Venetia area. South African Journal of Geology 111 (4), 387–408. http://dx.doi.org/10.2113/gssajg.111.4.387.

70. Chupin V.P., Vetrin V.R., Rodionov N.V., Matukov D.I., Berezhnaya N.G., Sergeev S.A., Mitrofanov F.P., Smirnov Yu.P., 2006. Composition of melt inclusions and age of zircons from plagiogneisses of the archean complex in the Kola superdeep borehole, Baltic Shield. Doklady Earth Sciences 406 (1), 153–157. http://dx.doi.org/10.1134/S1028334X06010363.

71. Chupin V.P., Vetrin V.R., Sergeev S.A., Berezhnaya N.G., Rodionov N.V., 2009. Magmatic inclusions in zircon from the Archean “gray gneisses” from the Kola super-deep well as an indicator of origin and age of the protolith. In: Isotopic systems and time of geological processes. Proceedings of IV Russian conference on isotope geochronology, vol. 2. St.-Petersburg, p. 266–269 (in Russian) [Чупин В.П., Ветрин В.Р., Сергеев С.А., Бережная Н.Г., Родионов Н.В. Магматические включения в цирконе из архейских “серых гнейсов” Кольской сверхглубокой скважины как показатель происхождения и возраста протолитов // Изотопные системы и время геологических процессов: Материалы IV Российской конференции по изотопной геохронологии. СПб.: ИП Каталкина, 2009. Т. II. С. 266–269].

72. Claesson S., Bogdanova S.V., Bibikova E.V., Gorbatschev R., 2001. Isotopic evidence for Palaeoproterozoic accretion in the basement of the East European Craton. Tectonophysics 339 (1–2), 1–18. http://dx.doi.org/10.1016/S0040-1951(01)00031-2.

73. Coleman J.L., Cahan S.M., 2012. Preliminary catalog of the sedimentary basins of the United States. U.S. Geological Survey Open-File Report 2012–1111, 27 p. (plus 4 figures and 1 table available as separate files). Available from: http://pubs.usgs.gov/of/2012/1111/.

74. Collins A.S., Patranabis-Deb S., Alexander E., Bertrama C.N., Falster G.M., Gore R.J., Mackintosh J., Dhang P.C., Saha D., Payne J.L., Jourdan F., Backé G., Halverson G.P., Wade B.P., 2015. Detrital mineral age, radiogenic isotopic stratigraphy and tectonic significance of the Cuddapah Basin, India. Gondwana Research 28 (4), 1294–1309. http://dx.doi.org/10.1016/j.gr.2014.10.013.

75. Collins W.J., 2002. Hot orogens, tectonic switching, and creation of continental crust. Geology 30 (6), 535–538. http://dx.doi.org/10.1130/0091-7613(2002)030<0535:HOTSAC>2.0.CO;2.

76. Colliston W.P., Cornell D.H., Schoch A.E., Praekelt H.E., 2015. Geochronological constraints on the Hartbees River Thrust and Augrabies Nappe: New insights into the assembly of the Mesoproterozoic Namaqua-Natal Province of Southern Africa. Precambrian Research 265, 150–165. http://dx.doi.org/10.1016/j.precamres.2015.03.008.

77. Condie K.C., 1998. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth and Planetary Science Letters 163 (1–4), 97–108. http://dx.doi.org/10.1016/S0012-821X(98)00178-2.

78. Condie K.C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge University Press, Cambridge, 306 p.

79. Condie K.C., 2004. Precambrian superplume events. In: P.G. Eriksson, W. Altermann, D.R. Nelson, W.U. Mueller, O. Catuneanu (Eds.), The Precambrian Earth: tempos and events. Developments in Precambrian Geology, vol. 12. Elsevier, Amsterdam, p. 163–173.

80. Condie K.C., 2005. Earth as an Evolving Planetary System. Elsevier, Amsterdam, 447 p.

81. Condie K.C., Aster R.C., 2010. Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambrian Research 180 (3–4), 227–236. http://dx.doi.org/10.1016/j.precamres.2010.03.008.

82. Condie K.C., Belousova E., Griffin W.L., Sircombe K.N., 2009a. Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Research 15 (3–4), 228–242. http://dx.doi.org/10.1016/j.gr.2008.06.001.

83. Condie K.C., Des Marais D.J., Abbott D., 2001. Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes and paleoclimates? Precambrian Research 106 (3–4), 239–260. http://dx.doi.org/10.1016/S0301-9268(00)00097-8.

84. Condie K.C., O’Neill C., Aster R.C., 2009b. Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth and Planetary Science Letters 282 (1–4), 294–298. http://dx.doi.org/10.1016/j.epsl.2009.03.033.

85. Corfu F., 1987. Inverse age stratification in the Archaean crust of the Superior Province: evidence for infra- and subcrustal accretion from high resolution U–Pb zircon and monazite ages. Precambrian Research 36 (3–4), 259–275. http://dx.doi.org/10.1016/0301-9268(87)90024-6.

86. Corfu F., Ayres L.D., 1991. Unscrambling the stratigraphy of an Archean greenstone belt: a U-Pb geochronological study of the Favourable Lake belt, northwestern Ontario, Canada. Precambrian Research 50 (3–4), 201–220. http://dx.doi.org/10.1016/0301-9268(91)90021-2.

87. Corrigan D., Hajnal Z., Németh B., Lucas S.B., 2005. Tectonic framework of a Paleoproterozoic arc-continent to continent-continent collisional zone, Trans-Hudson Orogen, from geological and seismic reflection studies. Canadian Journal Earth Sciences 42 (4), 421–434. http://dx.doi.org/10.1139/e05-025.

88. Corrigan D., Hanmer S., 1997. Anorthosites and related granitoids in the Grenville orogen: A product of convective thinning of the lithosphere? Geology 25 (1), 61–64. http://dx.doi.org/10.1130/0091-7613(1997)025<0061:AARGIT>2.3.CO;2.

89. Corriveau L., van Breemen O., 2000. Docking of the Central Metasedimentary Belt to Laurentia in geon 12: evidence from the 1.17–1.16 Ga Chevreuil intrusive suite and host gneisses, Quebec. Canadian Journal of Earth Sciences 37 (2–3), 253–269. http://dx.doi.org/10.1139/e00-004.

90. Cosca M.A., Mezger K., Essene E., 1998. The Baltica-Laurentia connection: Sveconorwegian (Grenvillian) metamorphism, cooling, and unroofing in the Bamble sector, Norway. The Journal of Geology 106 (5), 539–552. http://dx.doi.org/10.1086/516040.

91. Cox R.A., Indares A., Dunning G.R., 2002. Temperature-time paths in the high-P Manicouagan Imbricate zone, eastern Grenville Province: Evidence for two metamorphic events. Precambrian Research 117 (3–4), 225–250. http://dx.doi.org/10.1016/S0301-9268(02)00059-1.

92. Cruz M.J.M., Sabaté P., Teizeira J.B.G., Fróes R.J.B., 2000. Geochemistry and geological setting of the gabbro-anorthosite massifs of southern Bahia, Brazil. Geochimica Brasiliensis 14 (2), 233–247.

93. Dahl P.S., Hamilton M.A., Wooden J.L., Foland K.A., Frei R., McCombs J.A., Holm D.K., 2006. 2480 Ma mafic magmatism in the northern Black Hills, South Dakota: a new link connecting the Wyoming and Superior cratons. Canadian Journal of Earth Sciences 43 (10), 1579–1600. http://dx.doi.org/10.1139/e06-066.

94. Daigenault R., Mueller W.U., Chown E.H., 2004. Abitibi greenstone belt plate tectonics: the diachronous history of arc development, accretion and collision. Chapter 2.4. In: P.G. Eriksson, W. Altermann, D.R. Nelson, W.U. Mueller, O. Catuneanu (Eds.), The Precambrian Earth: tempos and events. Developments in Precambrian Geology, vol. 12. Elsevier, Amsterdam, p. 88–103.

95. Daly J.S., Balagansky V.V., Timmerman M.J., Whitehouse M.J., de Jong K., Guise P., Bogdanova S., Gorbatschev R., Bridgwater D., 2001. Ion microprobe U-Pb zircon geochronology and isotopic evidence for a trans-crustal suture in the Lapland-Kola orogen, northern Fennoscandian Shield. Precambrian Research 105 (2–4), 289–314. http://dx.doi.org/10.1016/S0301-9268(00)00116-9.

96. Daly J.S., Balagansky V.V., Timmerman M.J., Whitehouse M.J., 2006. The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. In: D.G. Gee, R.A. Stephenson (Eds.), European lithosphere dynamics. Geological Society, London, Memoirs, vol. 32, p. 579–598. http://dx.doi.org/10.1144/GSL.MEM.2006.032.01.35.

97. Daly S.J., Fanning C.M., Fairclough M.C., 1998. Tectonic evolution and exploration potential of the Gawler craton, South Australia. AGSO Journal of Australian Geology and Geophysics 17 (3), 145–168.

98. Dalziel I.W.D., 1997. Neoproterozoic–Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geological Society of America Bulletin 109 (1), 16–42. http://dx.doi.org/10.1130/0016-7606(1997)109<0016:ONPGAT>2.3.CO;2.

99. Dan W., Li X-H., Wang Q., Wang X.-C., Liu Y., Wyman D.A., 2014. Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break-off. Precambrian Research 254, 59–72. http://dx.doi.org/10.1016/j.precamres.2014.07.024.

100. Davis D.W., 2002. U–Pb geochronology of Archean metasedimentary rocks in the Pontiac and Abitibi subprovinces, Quebec, constraints on timing, provenance and regional tectonics. Precambrian Research 115 (1–4), 97–117. http://dx.doi.org/10.1016/S0301-9268(02)00007-4.

101. De S.K., Chacko T., Creaser R.A., Muehlenbachs K., 2000. Geochemical and Nd-Pb-O isotope systematics of granites from the Taltson Magmatic Zone, NE Alberta: implications for early Proterozoic tectonics in western Laurentia. Precambrian Research 102 (3–4), 221–249. http://dx.doi.org/10.1016/S0301-9268(00)00068-1.

102. Depine G.V., Andronicos C.L., Phipps-Morgan J., 2008. Near-isothermal conditions in the middle and lower crust induced by melt migration. Nature 452 (7183), 80–83. http://dx.doi.org/10.1038/nature06689.

103. Dewey J.F., Burke K., 1973. Tibetan, Variscan and Precambrian basement reactivation: products of continental collision. The Journal of Geology 81 (6), 683–692.

104. De Wit M.J., 1998. On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precambrian Research 91 (1–2), 181–226. http://dx.doi.org/10.1016/S0301-9268(98)00043-6.

105. De Wit M.J., Hynes A., 1995. The onset of interaction between the hydrosphere and oceanic crust, and the origin of the first continental lithosphere. In: M.P. Coward, A.C. Ries (Eds.), Early Precambrian processes. Geological Society, London, Special Publications, vol. 95, p. 1–9. http://dx.doi.org/10.1144/GSL.SP.1995.095.01.01.

106. De Wit M.J., Roering C., Hart R.J., Armstrong R.A., De Ronde R.E.J., Green R.W.E., Tredoux M., Perberdy E., Hart R.A., 1992. Formation of an Archaean continent. Nature 357 (6379), 553–562. http://dx.doi.org/doi:10.1038/357553a0.

107. Dickin A.P., McNutt R.H., 2007. The Central Metasedimentary Belt (Grenville Province) as a failed back-arc rift zone: Nd isotope evidence. Earth and Planetary Science Letters 259 (1–2), 97–106. http://dx.doi.org/10.1016/j.epsl.2007.04.031.

108. Dietz R.S., 1961. Continent and ocean basin evolution by spreading of the sea floor. Nature 190 (4779), 854–857. http://dx.doi.org/10.1038/190854a0.

109. Diwu C.R., Sun Y., Gao J.F., Fan L.G., 2013. Early Precambrian tectonothermal events of the North China Craton: Constraints from in situ detrital zircon U-Pb, Hf and O isotopic compositions in Tietonggou Formation. Chinese Science Bulletin 58 (31), 3760–3770. http://dx.doi.org/10.1007/s11434-013-5817-z.

110. Dokukina K.A., Konilov A.N., 2011. Metamorphic evolution of the Gridino mafic dyke swarm (Belomorian eclogite province, Russia). Chapter 18. In: L.F. Dobrzhinetskaya, S.W. Faryad, S. Wallis (Eds.), Ultrahigh-pressure metamorphism. 25 years after the discovery of coesite and diamond. Elsevier, Amsterdam, p. 579–621. http://dx.doi.org/10.1016/B978-0-12-385144-4.00017-5.

111. Dokukina K.A., Konilov A.N., Kaulina T.V., Mints M.V., Van K.V., Natapov L.M., Belousova E.A., Simakin S.G., Lepekhina E.N., 2014. Archaean to Palaeoproterozoic high-grade evolution of the Belomorian eclogite province in the Gridino area, Fennoscandian Shield: Geochronological evidence. Gondwana Research 25 (2), 585–613. http://dx.doi.org/10.1016/j.gr.2013.02.014.

112. Downes H., Peltonen P., Mänttäri I., Sharkov E.V., 2002. Proterozoic zircon ages from crustal granulite xenoliths, Kola Peninsula, Russia: evidence for crustal growth and reworking. Journal Geological Society, London 159 (5), 485–488. http://dx.doi.org/10.1144/0016-764901-162.

113. Eaton D.W., Darbyshire F., 2010. Lithospheric architecture and tectonic evolution of the Hudson Bay region. Tectonophysics 480 (1–4), 1–22. http://dx.doi.org/10.1016/j.tecto.2009.09.006.

114. Eglington B.M., 2006. Evolution of the Namaqua-Natal Belt, southern Africa – a geochronological and isotope geochemical review. Journal of African Earth Sciences 46 (1–2), 93–111. http://dx.doi.org/10.1016/j.jafrearsci.2006.01.014.

115. England P.C., Thompson A.B., 1984. Pressure-temperature-time paths of regional metamorphism. 1. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology 25 (4), 894–928. http://dx.doi.org/10.1093/petrology/25.4.894.

116. England P.C., Thompson A.B., 1986. Some thermal and tectonic models for crustal melting in continental collision zones. In: M.P. Coward, A.C. Ries (Eds.), Collision tectonics. Geological Society, London, Special Publications, vol. 19, p. 83–94. http://dx.doi.org/10.1144/GSL.SP.1986.019.01.05.

117. Eriksson P.G., Banerjee S., Catuneanu O., Corcoran P.L., Eriksson K.A., Hiatt E.E., Laflamme M., Lenhardt N., Long D.G.F., Miall A.D., Mints M.V., Pufahl P.K., Sarkar S., Simpson E.L., Williams G.E., 2013. Secular changes in sedimentation systems and sequence stratigraphy. Gondwana Research 24 (2), 468–489. http://dx.doi.org/10.1016/j.gr.2012.09.008.

118. Eriksson P.G., Banerjee S., Nelson D.R., Rigby M.J., Catuneanu O., Sarkar S., Roberts R.J., Ruban D., Mtimkulu M.N., Raju P.V.S., 2009. A Kaapvaal craton debate: nucleus of an early small supercontinent or affected by an enhanced accretion event? Gondwana Research 15 (3–4), 354–372. http://dx.doi.org/10.1016/j.gr.2008.08.001.

119. Ernst R., Bleeker W., 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Canadian Journal of Earth Sciences 47 (5), 695–739. http://dx.doi.org/10.1139/E10-025.

120. Ernst R.E., Buchan K., 2001. Large mafic magmatic events through time and links to mantle-plume heads. In: R.E. Ernst, K.L. Buchan (Eds.), Mantle plumes: their identification through time. Geological Society of America Special Papers, vol. 352, p. 483–575. http://dx.doi.org/10.1130/0-8137-2352-3.483.

121. Ernst R.E., Buchan K.L., 2003. Recognizing mantle plumes in the geological record. Annual Review of Earth and Planetary Sciences 31, 469–523. http://dx.doi.org/10.1146/annurev.earth.31.100901.145500.

122. Ernst R.E., Buchan K.L., Prokoph A., 2004. Large igneous province through time. In: P.G. Eriksson, W. Altermann, D.R. Nelson, W.U. Mueller, O. Catuneanu (Eds.), The Precambrian Earth: tempos and events. Developments in Precambrian Geology, vol. 12. Elsevier, Amsterdam, p. 173–180.

123. Farnetani C.G., Hofmann A.W., 2011. Mantle plumes. In: H. Gupta (Ed.), Encyclopedia of solid Earth geophysics. Springer, Dordrecht, p. 857–869. http://dx.doi.org/10.1007/978-90-481-8702-7_132.

124. Farquar J., Chacko T., Ellis D.J., 1996. Preservation of oxygen isotope compositions in granulites from Northwestern Canada and Enderby Land, Antarctica: implications for high-temperature isotopic thermometry. Contributions to Mineralogy and Petrology 125 (2), 213–224. http://dx.doi.org/10.1007/s004100050217.

125. Fonarev V.I., Konilov A.N., 2005. Pulsating evolution of metamorphism in granulite terrains: Kolvitsa meta-anorthosite massif, Kolvitsa Belt, Northeast Baltic Shield. International Geology Review 47 (8), 815–850. http://dx.doi.org/10.2747/0020-6814.47.8.815.

126. Foulger G.R., 2010. Plates vs Plumes: A Geological Controversy. Wiley-Blackwell, New York, 364 p.

127. Foulger G.R., Jurdy D.M. (Eds.), 2007. Plates, Plumes and Planetary Processes. Geological Society of America Special Papers, vol. 430, 974 p.

128. Friend C.R.L., Nutman A.P., 2005. Complex 3670–3500 Ma orogenic episodes superimposed on juvenile crust accreted between 3850–3690 Ma, Itsaq Gneiss Complex, southern West Greenland. The Journal of Geology 113 (4), 375–397. http://dx.doi.org/10.1086/430239.

129. Frisch T., Herd R.K., 2010. Highly metamorphosed iron-formation on Arcedeckne Island, Boothia Peninsula, Arctic Canada, and the paragenesis of harrisonite, Ca(Fe,Mg)6(SiO4)2(PO4)2. The Canadian Mineralogist 48 (4), 1005–1024. http://dx.doi.org/10.3749/canmin.48.4.1005.

130. Furnes H., De Wit M., Staudige H., Rosing M., Muehlenbachs K., 2007. A vestige of Earth’s oldest ophiolite. Science 315 (5819), 1704–1707. http://dx.doi.org/10.1126/science.1139170.

131. Gaál G., 1992. Global Proterozoic tectonic cycles and Early Proterozoic metallogeny. South African Journal of Geology 95 (3–4), 79–87.

132. Gaál G., Gorbatschev R., 1987. An Outline of the Precambrian evolution of the Baltic Shield. Precambrian Research 35, 15–52. http://dx.doi.org/10.1016/0301-9268(87)90044-1.

133. Gala M.G., Symons D.T.A., Palmer H.C., 1998. Geotectonics of the Hanson Lake Block, Trans-Hudson Orogen, Central Canada: A preliminary paleomagnetic report. Precambrian Research 90 (1–2), 85–101. http://dx.doi.org/10.1016/S0301-9268(98)00034-5.

134. Gerdes A., Zeh A., 2009. Zircon formation versus zircon alteration – new insights from combined U-Pb and Lu-Hf in situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Limpopo Belt. Chemical Geology 261 (3–4), 230–243. http://dx.doi.org/10.1016/j.chemgeo.2008.03.005.

135. Gerya T.V., Perchuk L.L., van Reenen D.D., Smit C.A., 2000. Two-dimensional numerical modeling of pressuretemperature-time paths for the exhumation of some granulite facies terrains in the Precambrian. Journal of Geodynamics 30 (1–2), 17–35. http://dx.doi.org/10.1016/S0264-3707(99)00025-3.

136. Glebovitsky V.A. (Ed.), 2005. Early Precambrian of the Baltic Shield. Nauka, St.Petersburg, 711 p. (in Russian) [Ранний докембрий Балтийского щита / Ред. В.А. Глебовицкий. СПб.: Наука, 2005. 711 с.].

137. Goldfarb R.J., Groves D.I., Gardoll S., 2001. Orogenic gold and geologic time: a global synthesis. Ore Geology Reviews 18 (1–2), 1–75. http://dx.doi.org/10.1016/S0169-1368(01)00016-6.

138. Gorbatschev R., Bogdanova S., 1993. Frontiers in the Baltic Shield. Precambrian Research 64 (1–4), 3–21. http://dx.doi. org/10.1016/0301-9268(93)90066-B.

139. Gore J., James D.E., Zengeni T.G., Gwavava O., 2009. Crustal structure of the Zimbabwe Craton and the Limpopo Belt of Southern Africa: new constraints from seismic data and implications for its evolution. South African Journal of Geology 112 (3–4), 213–228. http://dx.doi.org/10.2113/gssajg.112.3-4.213.

140. Gower C.F., Krogh T., 2002. A U–Pb geochronological review of the Proterozoic history of the eastern Grenville Province. Canadian Journal of Earth Sciences 39 (5), 795–829. http://dx.doi.org/10.1139/e01-090.

141. Gower C.F., Ryan A.F., Rivers T., 1990. Mid-Proterozoic Laurentia–Baltica: an overview of its geological evolution and a summary of the contributions made by this volume. In: C.F. Gower, T. Rivers, B. Ryan (Eds.), Mid-Proterozoic Laurentia–Baltica. Geological Association of Canada Special Paper, vol. 38, p. 1–20.

142. Griffin W.L., McGregor V.R., Nutman A.P., Taylor P.N., Bridgwater D., 1980. Early Archaean granulite-facies metamorphism south of Ameralik. Earth and Planetary Science Letters 50 (1), 59–74. http://dx.doi.org/10.1016/0012-821X(80)90119-3.

143. Griffin W.L., O’Reily S.Y., 2007a. Cratonic lithospheric mantle: Is anything subducted? Episodes 30 (1), 43–53.

144. Griffin W.L., O’Reily S.Y., 2007b. The Earliest subcontinental lithospheric mantle. Chapter 8.2. In: M.J. Van Kranendonk, R.H. Smithies, V.C. Bennett (Eds.), Earth’s Oldest Rocks. Developments in Precambrian Geology, vol. 15. Elsevier, Amsterdam, p. 1013–1035. http://dx.doi.org/10.1016/S0166-2635(07)15082-9.

145. Guadagnin F., Junior F.C., Magalhães A.J.C., Alessandretti L., Bállico M.B., Jelinek A.R., 2015. Sedimentary petrology and detrital zircon U–Pb and Lu–Hf constraints of Mesoproterozoic intracratonic sequences in the Espinhaço Supergroup: Implications for the Archean and Proterozoic evolution of the São Francisco Craton. Precambrian Research 266, 227–245. http://dx.doi.org/10.1016/j.precamres.2015.05.027.

146. Guillou L., Jaupart C., 1995. On the effect of continents on mantle convection. Journal of Geophysical Research 100 (B12), 24217–24238. http://dx.doi.org/10.1029/95JB02518.

147. Guillou-Frottier L., Burov E., Cloetingh S., Le Goff E., Deschamps Y., Huet B., Bouchot V., 2012. Plume-induced dynamic instabilities near cratonic blocks: Implications for P-T-t paths and metallogeny. Global and Planetary Change 90–91, 37–50. http://dx.doi.org/10.1016/j.gloplacha.2011.10.007.

148. Guo J.H., O’Brien P.J., Zhai M., 2002. High-pressure granulites in the Sanggan area, North China craton: metamorphic evolution, P–T paths and geotectonic significance. Journal of Metamorphic Geology 20 (8), 741–756. http://dx.doi.org/10.1046/j.1525-1314.2002.00401.x.

149. Guo J.H., Peng P., Chen Y., Jiao S.J., Windley B.F., 2012. UHT sapphirine granulite metamorphism at 1.93–1.92 Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research 222–223, 124–142. http://dx.doi.org/10.1016/j.precamres.2011.07.020.

150. Guo J.H., Sun M., Chen F.K., Zhai M.G., 2005. Sm–Nd and SHRIMP U–Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences 24 (5), 629–642. http://dx.doi.org/10.1016/j.jseaes.2004.01.017.

151. Gurney J.J., Helmstaedt H.H., Richardson S.H., Shirey S.B., 2010. Diamonds through time. Economic Geology 105 (3), 689–712. http://dx.doi.org/10.2113/gsecongeo.105.3.689.

152. Halla J., 2002. Origin of Paleoproterozoic reactivation of Neoarchean high-K granitoids in Eastern Finland. Annales Academiae Scientiarum Fennicae / Geologica, Geographica, vol. 163, p. 1–103.

153. Halla J., 2005. Late Archean high-Mg granitoids (sanukitoids) in the southern Karelian domain, eastern Finland: Pb and Nd isotopic constrains on crust-mantle interactions. Lithos 79 (1–2), 161–178. http://dx.doi.org/10.1016/j.lithos.2004.05.007.

154. Halls H.C., Heaman L.M., 2000. The paleomagnetic significance of new U–Pb age data from the Molson Dyke Swarm, Cauchon Lake Area, Manitoba. Canadian Journal of Earth Sciences 37 (6), 957–966. http://dx.doi.org/10.1139/e00-010.

155. Hamilton M.A., McLelland J., Selleck B., 2004. SHRIMP U-Pb zircon geochronology of the anorthosite-mangeritecharnokite-granite suite, Adirondack Mountains, New York: Ages of emplacement and metamorphism. In: R.P. Tollo, L. Corriveau, J. McLelland, M.J. Bartholomew (Eds.), Proterozoic tectonic evolution of the Grenville orogen in North America. Geological Society of America Memoir, vol. 197, p. 337–355. http://dx.doi.org/10.1130/0-8137-1197-5.337.

156. Hamilton W.B., 1998. Archean tectonics and magmatism. International Geology Review 40 (1), 1–39. http://dx.doi.org/10.1080/00206819809465196.

157. Hanski E.J., Huhma H., Lehtonen M.I., Rastas P., 1998. 2.0 Ga old oceanic crust in northern Finland. In: E. Hanski, J. Vuollo (Eds.), International Ophiolite Symposium and Field Excursion. Generation and Emplacement of Ophiolites Through Time. Geological Survey of Finland Special Paper, vol. 26, p. 24.

158. Harley S.L., 1989. The origin of granulites: a metamorphic perspective. Geological Magazine 126 (3), 215–247.http://dx.doi.org/10.1017/S0016756800022330.

159. Harley S.L., 1998. An appraisal of peak temperatures and thermal histories in ultrahigh-temperature (UHT) crustal metamorphism: the significance of aluminous orthopyroxene. In: Y. Motoyoshi, K. Shiraishi (Eds.), Origin and evolution of continents. Proceedings of International Symposium 13–14 October 1997, Tokyo. Memoirs of the National Institute of Polar Research, Special Issue 53, p. 49–73.

160. Harrison T.M., Blichert-Toft J., Müller W., Albarede F., Holden P., Mojzsis S.J., 2005. Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga. Science 310 (5756), 1947–1950. http://dx.doi.org/10.1126/science.1117926.

161. Hawkesworth C.J., Kemp A.I.S., 2006. Evolution of the continental crust. Nature 443 (7113), 811–817. http://dx.doi.org/10.1038/nature05191.

162. Heaman L.M., Böhm Ch.O., Machado N., Krogh T.E., Weber W., Corkery M.T., 2011. The Pikwitonei Granulite Domain, Manitoba: a giant Neoarchean high-grade terrane in the northwest Superior Province. Canadian Journal of Earth Sciences 48 (2), 205–245. http://dx.doi.org/10.1139/E10-058.

163. Heilimo E., Mikkola P., Halla J., 2007. Age and petrology of the Kaapinsalmi sanukitoid intrusion in Suomussalmi, Eastern Finland. Bulletin of the Geological Society of Finland 79 (1–2), 117–125.

164. Helmstaedt H.H., 2013. Tectonic relationships between E-Type cratonic and ultra-high-pressure (UHP) diamond: Implications for craton formation and stabilization. In: D.G. Pearson, H.S. Grütter, J.W. Harris, B.A. Kjarsgaard, H. O’Brien, N.V.C. Rao, S. Sparks (Eds.), Proceedings of 10th International Kimberlite Conference. Springer, p. 45–58. http://dx.doi.org/10.1007/978-81-322-1170-9_4.

165. Hess H.H., 1962. History of Ocean Basins. In: A.E.J. Engel, H.L. James, B.F. Leonard (Eds.), Petrologic studies: a volume to honor of A.F. Buddington. Geological Society of America, Boulder, CO, p. 599–620.

166. Hiatt E.E., Palmer S.E., Kyser T.K., O’Connor T.K., 2010. Basin evolution, diagenesis and uranium mineralization in the Paleoproterozic Thelon Basin, Nunavut, Canada. Basin Research 22 (3), 302–323, http://dx.doi.org/10.1111/j.1365-2117.2009.00415.x.

167. Hill R.I., Campbell I.H., Davies G.F., Griffits R.W., 1992. Mantle plumes and continental tectonics. Science 256 (5054), 186–193. http://dx.doi.org/10.1126/science.256.5054.186.

168. Hoffman P.F., 1989. Precambrian geology and tectonic history of North America: an overview. In: A.W. Bally, A.R. Palmer (Eds.), The Geology of North America. Geological Society of America, vol. A, p. 447–512.

169. Hoffman P.F., 1991. Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252 (5011), 1409–1412. http://dx.doi.org/10.1126/science.252.5011.1409.

170. Hoffman P.F., Bowring S.A., Buchwaldt R., Hildebrand R.S., 2011. Birthdate for the Coronation paleocean: age of initial rifting in Wopmay orogen, Canada. Canadian Journal of Earth Sciences 48 (2), 281–293. http://dx.doi.org/10.1139/E10-038.

171. Högdahl K., Andersson U.B., Eklund O. (Eds.), 2004. The Transscandinavian Igneous Belt (TIB) in Sweden: a Review of Its Character and Evolution. Geological Survey of Finland Special Paper, vol. 37, Espoo, 123 p.

172. Holm D.K., Van Schmus W.R., MacNeil L.C., Boerboom T.J., Schweitzer D., Schneider D., 2005. U-Pb zircon geochronology of Paleoproterozoic plutons from the northern midcontinent, USA: Evidence for subduction flip and continued convergence after geon 18 Penokean orogenesis. Geological Society of America Bulletin 117 (3–4), 259–275. http://dx.doi.org/10.1130/B25395.1.

173. Hölttä P., 1998. Metamorphic Zones and Evolution of Granulite Grade Metamorphism in the Early Proterozoic Pielavesi Area, Central Finland. Geological Survey of Finland Bulletin 344, 50 p.

174. Hölttä P., Heilimo E., Huhma H., Kontinen A., Mertanen S., Mikkola P., Paavola J., Peltonen P., Semprich J., Slabunov A., Sorjonen-Ward P., 2012. The Archaean of the Karelia Province in Finland. In: P. Hölttä (Ed.), The Archaean of the Karelia Province in Finland. Geological Survey of Finland Special Paper, vol. 54, p. 21–73.

175. Horrocks P.C., 1983. A corundum and sapphirine paragenesis from the Limpopo Mobile Belt, Southern Africa. Journal of Metamorphic Geology 1 (1), 13–23. http://dx.doi.org/10.1111/j.1525-1314.1983.tb00262.x.

176. Howard H.M., Smithies R.H., Kirkland C.L., Kelsey D.E., Aitken A., Wingate M.T.D., De Gromard R.Q, Spaggiari C.V., Maier W.D., 2015. The burning heart – the Proterozoic geology and geological evolution of the west Musgrave Region, Central Australia. Gondwana Research 27 (1), 64–94. http://dx.doi.org/10.1016/j.gr.2014.09.001.

177. Huhma H., Meriläinen K., 1991. Provenance of paragneisses from the Lapland granulite belt. In: P. Tuisku, K. Laajoki (Eds.), Metamorphism, deformation and structure of the crust. Abstracts (IGCP 275). Res Terrae, Series A (5), 26.

178. Hynes A., Rivers T., 2010. Protracted continental collision – evidence from the Grenville Orogen. Canadian Journal of Earth Sciences 47 (5), 591–620. http://dx.doi.org/10.1139/E10-003.

179. Iizuka T., Komiya T., Uenoa Yu., Katayama I., Uehara Yo., Maruyama S., Hirata T., Johnson S.P., Dunkley D.J., 2007. Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: New constraints on its tectonothermal history. Precambrian Research 153 (3–4), 179–208. http://dx.doi.org/10.1016/j.precamres.2006.11.017.

180. Iizuka T., McCulloch M.T., Komiya T., Shibuya T., Ohta K., Ozawa H., Sugimura E., Collerson K.D., 2010. Monazite geochronology and geochemistry of meta-sediments in the Narryer Gneiss Complex, Western Australia: constraints on the tectonothermal history and provenance. Contributions to Mineralogy and Petrology 160 (6), 803–823. http://dx.doi.org/10.1007/s00410-010-0508-0.

181. Indares A., Dunning G., 2004. Crustal architecture above the high-pressure belt of the Grenville Province in the Manicouagan area: new structural, petrologic and U–Pb age constraints. Precambrian Research 130 (1–4), 199–228. http://dx.doi.org/10.1016/j.precamres.2003.11.005.

182. Isley A.E., Abbott D.H., 1999. Plume-related mafic volcanism and the deposition of banded iron formation. Journal of Geophysical Research 104 (B7), 15461–15477. http://dx.doi.org/10.1029/1999JB900066.

183. Jackson G.D., Berman R.G., 2000. Precambrian metamorphic and tectonic evolution of Northern Baffin Island, Nunavut, Canada. The Canadian Mineralogist 38 (2), 399–421. http://dx.doi.org/10.2113/gscanmin.38.2.399.

184. Jackson S.L., Fyona J.A., Corfu F., 1994. Review of Archean supracrustal assemblages of the southern Abitibi greenstone belt in Ontario, Canada: products of microplate interaction within a large-scale plate-tectonic. Precambrian Research 65 (1–4), 183–205. http://dx.doi.org/10.1016/0301-9268(94)90105-8.

185. Jamieson R.A., Beaumont C., Nguyen M.H., Culshaw N.G., 2007. Synconvergent ductile flow in variable-strength continental crust: Numerical models with application to the western Grenville orogen. Tectonics 26 (5), TC5005. http://dx.doi.org/10.1029/2006TC002036.

186. Jefferson C.W., Thomas D.J., Gandhi S.S., Ramaekers P., Delaney G., Brisbin D., Cutts C., Quirt D., Portella P., Olson R.A., 2007, Unconformity associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta. In: W.D. Goodfellow (Ed.), Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 273–305.

187. Johnson S.P., Cutten H.N.C., Muhongo S., De Waele B., 2003. Neoarchaean magmatism and metamorphism of the western granulites in the central domain of the Mozambique belt, Tanzania: U–Pb SHRIMP geochronology and PT estimates. Tectonophysics 375 (1–4), 125–145. http://dx.doi.org/10.1016/j.tecto.2003.06.003.

188. Kalsbeek F., Nutman A.P., 1996. Anatomy of the Early Proterozoic Nagssugtoqidian Orogen, West Greenland, explored by reconnaissance SHRIMP U-Pb dating. Geology 24 (6), 515–518. http://dx.doi.org/10.1130/0091-7613(1996)024<0515:AOTEPN>2.3.CO;2.

189. Kalsbeek F., Taylor P.N., 1999: Review of isotope data for Precambrian rocks from the Disko Bugt region, West Greenland. In: F. Kalsbeek (Ed.), Precambrian geology of the Disko Bugt region, West Greenland. Geology of Greenland Survey Bulletin, vol. 181, p. 41–47.

190. Kalsbeek F., Pulvertaft T.C.R., Nutman A.P., 1998. Geochemistry, age and origin of metagreywackes from the Palaeoproterozoic Karrat Group, Rinkian Belt, West Greenland. Precambrian Research 91 (3–4), 383–399. http://dx.doi.org/10.1016/S0301-9268(98)00059-X.

191. Käpyaho A., 2006. Whole-rock geochemistry of some tonalite and high Mg/Fe gabbro, diorite, and granodiorite plutons (sanukitoid suites) in the Kuhmo district, eastern Finland. Bulletin of the Geological Society of Finland 78 (1–2), 121–141.

192. Karlstrom K.E., Åhäll K.-I., Harlan S.S., Williams M.L., McLelland J., Geissman J.W., 2001. Long lived (1.8–1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precambrian Research 111 (1–4), 5–30. http://dx.doi.org/10.1016/S0301-9268(01)00154-1.

193. Kaulina T.V., 2010. Formation and Recrystallization of Zircons in Polimetamorphic Complexes. Kola SC RAS, Apatity, 144 p. (in Russian) [Каулина Т.В. Образование и преобразование циркона в полиметаморфических комплексах. Апатиты: Изд-во Кольского научного центра РАН, 2010. 144 с.].

194. Kaulina T.V., Kislitsyn R.V., Apanasevich E.A., 2004. Final stages of the metamorphic evolution of the Tanaélv Belt, Kola Peninsula, Baltic Shield: Evidence from U–Pb dating on zircon, titanite, and rutile. Geochemistry International 42 (6), 513–519.

195. Kempton P.D., Downes H., Neymark L.A., Wartho J.A., Zartman R.E., Sharkov E.V., 2001. Garnet granulite xenoliths from the northern Baltic Shield – the underplated lower crust of a Palaeoproterozoic large igneous province? Journal of Petrology 42 (4), 731–763. http://dx.doi.org/10.1093/petrology/42.4.731.

196. Kerr A.C., Mahoney J.J., 2007. Oceanic plateaus: Problematic plumes, potential paradigms. Chemical Geology 241 (3–4), 332–353. http://dx.doi.org/10.1016/j.chemgeo.2007.01.019.

197. Ketchum J.W.F., Ayer J.A., Van Breemen O., Pearson N.J., Becker J.K., 2008. Pericontinental crustal growth of the Southwestern Abitibi Subprovince, Canada – U-Pb, Hf, and Nd isotope evidence. Economic Geology 103 (6), 1151–1184. http://dx.doi.org/10.2113/gsecongeo.103.6.1151.

198. Keulen N., Næraa T., Kokfelt T.F., Schumacher J.C., Scherstén A., 2010. Zircon record of the igneous and metamorphic history of the Fiskenæsset anorthosite complex in southern West Greenland. In: O. Bennike, A.A. Garde, W.S. Watt (Eds.), Review of Survey activities 2009. Geological Survey of Denmark and Greenland Bulletin, vol. 20, p. 67–70.

199. Kitsul V.I., Glebovitsky V.A., Vapnic Y.A., Frisch T., 2000. Gneisses from the granulite terrane of the Central Boothia uplift, Arctic Canada. The Canadian Mineralogist 38 (2), 443–454. http://dx.doi.org/10.2113/gscanmin.38.2.443.

200. Kohonen J., Rämö T., 2005. Sedimentary rocks, diabases, and late cratonic evolution. In: M. Lehtinen, P.A. Nurmi, O.T. Rämö (Eds.), Precambrian geology of Finland – Key to the evolution of the Fennoscandian Shield. Developments in Precambrian Geology, vol. 14. Elsevier, Amsterdam, p. 563–603. http://dx.doi.org/10.1016/S0166-2635(05)80014-3.

201. Komiya T., 2007. Material circulation through time – chemical differentiation within the mantle and secular variation of temperature and composition of the mantle. In: D.A. Yuen, S. Maruyama, S. Karato, B.F. Windley (Eds.), Superplumes: beyond plate tectonics. Springer, New York, p. 187–234. http://dx.doi.org/10.1007/978-1-4020-5750-2_8.

202. Komiya T., Maruyama S., Masuda T., Nohda S., Hayashi M., Okamoto K., 1999. Plate tectonics at 3.8–3.7 Ga: Field Evidence from the Isua Accretionary Complex, Southern West Greenland. The Journal of Geology 107 (5), 515–554. http://dx.doi.org/10.1086/314371.

203. Konilov A.N., Mints M.V., Janardhan A.S., 2001. Internal structure of the Nilgiri Granulite block from petrological mapping. Gondwana Research 4 (4), 665–666. http://dx.doi.org/10.1016/S1342-937X(05)70461-5.

204. Konilov A.N., Shchipansky A.A., Mints M.V., Dokukina K.A., Kaulina T.V., Bayanova T.B., Natapov L.M., Belousova E.A., Griffin W.L., O’Reilly S.Y., 2011. The Salma eclogites of the Belomorian Province, Russia: HP/UHP metamorphism through the subduction of mesoarchean oceanic crust. Chapter 19. In: L.F. Dobrzhinetskaya, S.W. Faryad, S. Wallis (Eds.), Ultrahigh-pressure metamorphism. 25 years after the discovery of coesite and diamond. Elsevier, Amsterdam, p. 623–670. http://dx.doi.org/10.1016/B978-0-12-385144-4.00018-7.

205. Kontinen A., 1987. An early Proterozoic ophiolite – the Jormua mafic-ultramafic complex, northeastern Finland. Precambrian Research 35 (1), 313–341. http://dx.doi.org/10.1016/0301-9268(87)90061-1.

206. Kopylova M.G., Afanasiev V.P., Bruce L.F., Thurston P.C., Ryder J., 2011. Metaconglomerate preserves evidence for kimberlite, diamondiferous root and medium grade terrane of a pre-2.7 Ga Southern Superior protocraton. Earth and Planetary Science Letters 312 (1–2), 213–225. http://dx.doi.org/10.1016/j.epsl.2011.09.057.

207. Korhonen F.J., 2006. An Investigation into Tectonometamorphic Evolution of the Wilson Lake Terrane, Eastern Grenville Province. University of Minnesote, 283 p.

208. Korsman K., Korja T., Pajunen M., Virransalo P., GGT/SVEKA Working Group, 1999. The GGT/SVEKA Transect: structure and evolution of the continental crust in the Palaeoproterozoic Svecofennian orogen in Finland. International Geology Review 41 (4), 287–333. http://dx.doi.org/10.1080/00206819909465144.

209. Kramers J.D., Kreissig K., Jones M.Q.W., 2001. Crustal heat production and style of metamorphism: a comparison between two Archean high grade provinces in the Limpopo Belt, southern Africa. Precambrian Research 112 (1–2), 149–163. http://dx.doi.org/10.1016/S0301-9268(01)00173-5.

210. Kraus J., Menard T., 1997. A thermal gradient at constant pressure: implications for low- to medium-pressure metamorphism in a compressional tectonic setting, Flin-Flon and Kisseynew Domains, Trans-Hudson Orogen, Central Canada. The Canadian Mineralogist 35 (5), 1117–1136.

211. Krogh T.E., 1993. High precision U-Pb ages for granulite metamorphism and deformation in the Archean Kapuskasing structural zone, Ontario: implications for structure and development of the lower crust. Earth and Planetary Science Letters 119 (1–2), 1–18. http://dx.doi.org/10.1016/0012-821X(93)90002-Q.

212. Kröner A., Jaeckel P., Brandl G., Nemchin A.A., Pidgeon R.T., 1999. Single zircon ages for granitoid gneisses in the Central Zone of the Limpopo Belt, Southern Africa and geodynamic significance. Precambrian Research 93 (4), 299–337. http://dx.doi.org/10.1016/S0301-9268(98)00102-8.

213. Kröner A., Stern R.J., 2004. Africa. Pan-African orogeny. In: R.C. Selley, L.R.M. Cocks, I.R. Plimer (Eds.), Encyclopedia of Geology. Reference module in Earth systems and environmental sciences. Elsevier, Amsterdam, p. 1–12. http://dx.doi.org/10.1016/B0-12-369396-9/00431-7.

214. Kröner A., Wilde S.A., Li J.H., Wang K.Y., 2005. Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences 24 (5), 577–595. http://dx.doi.org/10.1016/j.jseaes.2004.01.001.

215. Kröner A., Wilde S.A., Zhao G.C., O’Brien P.J., Sun M., Liu D.Y., Wan Y.S., Liu S.W., Guo J.H., 2006. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of northern China: Evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton. Precambrian Research 146 (1–2), 45–67. http://dx.doi.org/10.1016/j.precamres.2006.01.008.

216. Kusky T.M., Li J., 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences 22 (4), 383–397. http://dx.doi.org/10.1016/S1367-9120(03)00071-3.

217. Lahtinen R., Garde A.A., Melezhik V.A., 2008. Paleoproterozoic evolution of Fennoscandia and Greenland. Episodes 31 (1), 20–28.

218. Lahtinen R., Korja A., Nironen M., 2005. Paleoproterozoic tectonic evolution. In: M. Lehtinen, P.A. Nurmi, O.T. Rämö (Eds.), Precambrian geology of Finland – key to the evolution of the Fennoscandian Shield. Developments in Precambrian Geology, vol. 14. Elsevier, Amsterdam, p. 481–531. http://dx.doi.org/10.1016/S0166-2635(05)80012-X.

219. Laurent O., Martin H., Doucelance R., Moyen J.-F., Paquette J.-L., 2011. Geochemistry and petrogenesis of high-K “sanukitoids” from the Bulai pluton, Central Limpopo Belt, South Africa: Implications for geodynamic changes at the Archaean–Proterozoic boundary. Lithos 123 (1–4), 73–91. http://dx.doi.org/10.1016/j.lithos.2010.12.009.

220. Lee C.-T.A., Luffi P., Chin E., 2011. Building and destroying continental mantle. Annual Review of Earth and Planetary Sciences 39, 59–90. http://dx.doi.org/10.1146/annurev-earth-040610-133505.

221. Lee Y., Cho M., Cheong W., Yi K., 2014. A massif-type (~1.86 Ga) anorthosite complex in the Yeongnam Massif, Korea: late-orogenic emplacement associated with the mantle delamination in the North China Craton. Terra Nova 26 (5), 408–416. http://dx.doi.org/10.1111/ter.12115.

222. Leite C.M.M., Barbosa J.S.F., Goncalves P., Nicollet C., Sabaté P., 2009. Petrological evolution of silica-undersaturated sapphirine-bearing granulite in the Paleoproterozoic Salvador–Curaçá Belt, Bahia, Brazil. Gondwana Research 15 (1), 49–70. http://dx.doi.org/10.1016/j.gr.2008.06.005.

223. Levchenkov O.A., Levsky L.K., Nordgulen Ø., Dobrzhinetskaya L.F., Vetrin V.R., Cobbing J., Nilsson L.P., Sturt B.A., 1995. U-Pb zircon ages from Sørvaranger, Norway, and the western part of the Kola Peninsula, Russia. In: Norges Geologiske Undersøkelse Special Publication, vol. 7, p. 29–47.

224. Li Z.X., Bogdanova S.V., Collins A.S., Davidson A., De Waele B., Ernst R.E., Fitzsimons I.C.W., Fuck R.A., Gladkochub D.P., Jacobs J., Karlstrom K.E., Lu S., Natapov L.M., Pease V., Pisarevsky S.A., Thrane K., Vernikovsky V., 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research 160 (1–2), 179–210. http://dx.doi.org/10.1016/j.precamres.2007.04.021.

225. Lobach-Zhuchenko S.B., Chekulaev V.P., 2007. Neoarchaean granulites of Karelia: the geological position and geodynamic interpretation. In: Granulite complexes in the geological development of the Precambrian and Phanerozoic. Proceedings of II Russian conference on the Precambrian geology and geodynamics. St.-Petersburg, p. 201–205 (in Russian) [Лобач-Жученко С.Б., Чекулаев В.П. Неоархейские гранулиты Карелии – геологическое положение и геодинамическая интерпретация // Гранулитовые комплексы в геол.развитии докембрия и фанерозоя: Материалы II Российской конференции по проблемам геологии и геодинамики докембрия (2–4 октября 2007 г., Санкт-Петербург). СПб., 2007. С. 201–205].

226. Lobach-Zhuchenko S.B., Chekulaev V.P., Ivanikov V.V., Kovalenko A.V., Bogomolov E.S., 2005. The Archaean sanukitoid series of the Baltic Shield: geological setting, geochemical characteristics and implications for their origin. Lithos 79 (1–2), 107–128. http://dx.doi.org/10.1016/j.lithos.2004.04.052.

227. Lobach-Zhuchenko S.B., Chekulaev V.P., Sergeev S.A., Levchenkov O.A., Krylov I.N., 1993. Archaean rocks from southeastern Karelia (Karelian granite-greenstone terrain). Precambrian Research 62 (4), 375–388. http://dx.doi.org/10.1016/0301-9268(93)90012-Q.

228. Lucas S.B., White D., Hajnal Z., Lewry J.F., Ashton K.E., Weber W., Clowes R., 1993. Deep seismic profile across a Proterozoic collision zone: surprises at depth. Nature 363 (6427), 339–342. http://dx.doi.org/10.1038/363339a0.

229. Maruyama S., 1994. Plume tectonics. Journal of the Geological Society of Japan 100 (1), 24–49. http://doi.org/10.5575/geosoc.100.24.

230. Maruyama S., Yuen D.A., Karato S.-I., Windley B.F., 2007. Dynamics of plumes and superplumes through time. Chapter 15. In: D.A. Yuen, S. Maruyama, S. Karato, B.F. Windley (Eds.), Superplumes: beyond plate tectonics. Springer, New York, p. 441–502. http://dx.doi.org/10.1007/978-1-4020-5750-2_15.

231. McDonough M.R., McNicoll V.J., Schetselaar E.M., 1995. Age and kinematics of crustal shortening and escape in a twosided oblique slip collisional and magmatic orogen, Proterozoic Taltson Magmatic Zone, Northeastern Alberta. In: G.M. Ross (Ed.), Alberta Basement Transects Workshop, Lithoprobe Report (LITHOPROBE Secretariat, University of British Columbia), vol. 47, p. 264–289.

232. Melezhik V.A., Prave A.R., Fallick A.E., Lepland A., Kump L.R., Strauss H. (Eds.), 2012. Reading the Archive of Earth’s Oxygenation. Vol. 1. The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia – Drilling Early Earth Project. Springer, Berlin, Heidelberg, 490 p.

233. Melezhik V.A., Sturt B.F., 1994. General geology and evolutionary history of the Early Proterozoic Polmak-PasvikPechenga-Imandra-Varzuga-Ust'Ponoy greenstone belt in the northeastern Baltic Shield. Earth-Science Reviews 36 (3–4), 205–241. http://dx.doi.org/10.1016/0012-8252(94)90058-2.

234. Mendonidis P., Thomas R.J., Grantham G.H., Armstrong R.A., 2015. Geochronology of emplacement and charnockite formation of the Margate Granite Suite, Natal Metamorphic Province, South Africa: Implications for Natal-Maud belt correlations. Precambrian Research 265, 189–202. http://dx.doi.org/10.1016/j.precamres.2015.02.013.

235. Mezger K., Bohlen S.R., Hanson G.N., 1990. Metamorphic history of the Archean Pikwitonei Granulite Domain and Cross Lake Subprovince, Superior Province, Manitoba, Canada. Journal of Petrology 31 (2), 483–517. http://dx.doi.org/10.1093/petrology/31.2.483.

236. Millonig L., Zeh A., Gerdes A., Klemd R., 2008. Late Archaean high-grade metamorphism in the Central Zone of the Limpopo Belt (South Africa): Petrological and geochronological evidence from the Bulai Pluton. Lithos 103 (3–4), 333–351. http://dx.doi.org/10.1016/j.lithos.2007.10.001.

237. Mints M.V., 1998. The correlation between the Palaeoproterozoic orogens and granulite belts in the Baltic Shield and North America craton: A suggested model of Palaeoproterozoic plate tectonics. Gondwana Research 1 (2), 235–246. http://dx.doi.org/10.1016/S1342-937X(05)70834-0.

238. Mints M.V., 1999. Lithospheric state parameters and plate tectonics in the Archean. Geotectonics 33 (6), 462–473. Mints M.V., 2007. Paleoproterozoic supercontinent: origin and evolution of accretionary and collisional orogens exemplified in northern cratons. Geotectonics 41 (4), 257–280. http://dx.doi.org/10.1134/S0016852107040012.

239. Mints M.V., 2011. 3D model of deep structure of the Early Precambrian crust in the East European Craton and paleogeodynamic implications. Geotectonics 45 (4), 267–290. http://dx.doi.org/10.1134/S0016852111040054.

240. Mints M.V., 2014. Tectonics and geodynamics of granulite-gneiss complexes in the East European Craton. Geotectonics 48 (6), 496–522. http://dx.doi.org/10.1134/S0016852114060089.

241. Mints M.V., 2015a. Neoarchean intracontinental areas of sedimentation, magmatism, and high-pressure metamorphism (hot regions) in eastern Fennoscandia. Chapter 3. In: East European Craton: Early Precambrian History and 3D Models of Deep Crustal Structure. Geological Society of America Special Papers, vol. 510, p. 89–123, http://dx.doi.org/10.1130/2015.2510(03).

242. Mints M.V., 2015b. Granulite-gneiss belt: A special type of tectonic structure, the uniqueness of which is not limited to high-grade metamorphism. Chapter 16. In: East European Craton: Early Precambrian History and 3D Models of Deep Crustal Structure. Geological Society of America Special Papers, vol. 510, p. 329–332. http://dx.doi.org/10.1130/2015.2510(16).

243. Mints M.V., 2015c. Evolution and major features of the Early Precambrian crust of the East European craton. Chapter 17. In: East European Craton: Early Precambrian History and 3D Models of Deep Crustal Structure. Geological Society of America Special Papers, vol. 510, p. 333–354, http://dx.doi.org/10.1130/2015.2510(17).

244. Mints M.V., Belousova E.A., Konilov A.N., Natapov L.M., Shchipansky A.A., Griffin W.L., O’Reilly S.Y., Dokukina K.A., Kaulina T.V., 2010. Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia. Geology 38 (8), 739–742. http://dx.doi.org/10.1130/G31219.1.

245. Mints M.V., Dokukina K.A., Konilov A.N., 2014. The Meso-Neoarchaean Belomorian eclogite province: Tectonic position and geodynamic evolution. Gondwana Research 25 (2), 561–584. http://dx.doi.org/10.1016/j.gr.2012.11.010.

246. Mints M.V., Dokukina K.A., Konilov A.N., Belousova E.A., Dokukin P.A., Kaulina T.V., Natapov L.M., Van K.V., 2015a.

247. Mesoarchean Kola-Karelia continent. Chapter 2. In: East European Craton: Early Precambrian history and 3D models of deep crustal structure. Geological Society of America Special Papers, vol. 510, p. 15–88. http://dx.doi.org/10.1130/2015.2510(02).

248. Mints M.V., Glaznev V.N., Konilov A.N., Kunina N.M., Nikitichev A.P., Raevskiy A.B., Sedykh J.N., Stupak V.M., Fonarev V.I., 1996. Early Precambrian of the North-East of the Baltic Shield: Paleogeodynamics, Structure and Evolution of the Continental Crust. Naucnhyi Mir, Moscow, 287 p. (in Russian) [Минц М.В., Глазнев В.Н., Конилов А.Н., Кунина Н.М., Никитичев А.П., Раевский А.Б., Седых Ю.Н., Ступак В.М., Фонарев В.И. Ранний докембрий северо-востока Балтийского щита: палеогеодинамика, строение и эволюция континентальной коры. М.: Научный мир, 1996. 287 c.].

249. Mints M.V., Kaulina T.V., Konilov A.N., Krotov A.V., Stupak V.M., 2007. The thermal and geodynamic evolution of the Lapland granulite belt: implications for the thermal structure of the lower crust during granulite-facies metamorphism. Gondwana Research 12 (3), 252–267. http://dx.doi.org/10.1016/j.gr.2006.10.007.

250. Mints M.V., Konilov A.N., Kaulina T.V., Zlobin V.L., Bogina M.M., Philippova I.B., Babayants P.S., Blokh Y.I., Bush W.A., Trusov A.A., 2015c. Late Paleoproterozoic Lapland–Mid-Russia–South Baltia intracontinental collisional orogeny. Chapter 8. In: East European Craton: Early Precambrian history and 3D models of deep crustal structure. Geological Society of America Special Papers, vol. 510, p. 173–256. http://dx.doi.org/10.1130/2015.2510(08).

251. Mints M.V., Philippova I.B., Babayants P.S., Blokh Y.I., Trusov A.A., 2015b. Neoarchean Volgo-Uralia continent. Chapter 5. In: East European Craton: Early Precambrian History and 3D Models of Deep Crustal Structure. Geological Society of America Special Papers, vol. 510, p. 131–153. http://dx.doi.org/10.1130/2015.2510(05).

252. Mints M.V., Ts’on O.V., 1997. The geodynamic environment of the Late Archean volcanism of the northeastern Baltic Shield, Keivy Hills, Kola Peninsula. Geochemistry International 35 (3), 203–218.

253. Mitrofanov F.P., Nerovich L.I., 2003. Timing of magmatic crystallization and metamorphic transformations in the Pyrshin and Abvar autonomous anorthosite massifs, Lapland Granulite Belt. Petrology 11 (4), 343–351.

254. Moecher D.P., Anderson E.D., Cook C.A., Mezger K., 1997. The petrogenesis of metamorphosed carbonatites in the Grenville Province, Ontario. Canadian Journal of Earth Sciences 34 (9), 1185–1201. http://dx.doi.org/10.1139/e17-095.

255. Möller A., O’Brien P.J., Kennedy A., Kröner A., 2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). In: D. Vance, W. Müller, I.M. Villa (Eds.), Geochronology: Linking the isotopic record with petrology and textures. Geological Society, London, Special Publications, vol. 220, p. 65–81. http://dx.doi.org/10.1144/GSL.SP.2003.220.01.04.

256. Morgan W.J., 1971. Convection plumes in the lower mantle. Nature 230 (5288), 42–43. http://dx.doi.org/10.1038/230042a0.

257. Moser D.E., Bowman J.R., Wooden J., Valley J.W., Mazdab F., Kita N., 2008. Creation of a continent recorded in zircon zoning. Geology 36 (3), 239–242. http://dx.doi.org/10.1130/G24416A.1.

258. Mosher S., Levine J.S.F., Carlson W.D., 2008. Mesoproterozoic plate tectonics: A collisional model for the Grenville-aged orogenic belt in the Llano uplift, central Texas. Geology 36 (1), 55–58. http://dx.doi.org/10.1130/G24049A.1.

259. Moyen J.-F., Martin H., 2012. Forty years of TTG research. Lithos 148, 312–336. http://dx.doi.org/10.1016/j.lithos.2012.06.010.

260. Mutanen T., 1997. Geology and Ore Petrology of the Akanvaara and Koitelainen Mafic Layered Intrusions and the Keivitsa-Satovaara Layered Complex, Northern Finland. Geological Survey of Finland Bulletin 395. Geological Survey of Finland, Espoo, 233 p.

261. Mutanen T., Huhma H., 2001. U-Pb geochronology of the Koitelainen, Akanvaara and Keivitsa mafic layered intrusions and related rocks. In: M. Vaasjoki (Ed.), Radiometric age determinations from Finnish Lapland and their bearing on the timing of Precambrian volcano-sedimentary sequences. Geological Survey of Finland Special Paper, vol. 33, p. 229–246.

262. Mutanen T., Huhma H., 2003. The 3.5 Ga Siurua trondhjemite gneiss in the Archaean Pudasjärvi Granulite Belt, northern Finland. Bulletin of the Geological Society of Finland 75 (1–2), 51–68.

263. Myskova T.A., Glebovitskii V.A., Mil’kevich R.I., Berezhnaya N.G., Skublov S.G., Presnyakov S.L., Shuleshko I.K., L’vov P.A., 2008. New data on origin and age (U–Pb, SHRIMP-II) of zircons from khondalites of the Lapland Granulite Belt (Baltic Shield). Doklady Earth Sciences 423 (1), 1294–1298. http://dx.doi.org/10.1134/S1028334X08080254.

264. Myskova T.A., Milkevich R.I., 2005. Comparative analysis of aluminous gneisses from the Central Kola and Belomorian blocks of the Baltic shield (composition, origin and age of the protolith). In: Belomorian mobile belt and its analogs: Geology, geochronology, geodynamics, minerageny. Institute of Geology, Karelian Scientific Center of RAS, Petrozavodsk, p. 235–236 (in Russian) [Мыскова Т.А., Милькевич Р.И. Сравнительный анализ глиноземистых гнейсов Центрально-Кольского и Беломорского блоков Балтийского Щита (состав, происхождение а возраст протолита) // Беломорский подвижный пояс и его аналоги: геология, геохронология, геодинамика, минерагения. Петрозаводск: Институт Геологии КНЦ РАН, 2005. С. 235–236].

265. Nelson D.R., 2002. Compilation of Geochronology Data, 2001. Western Australia Geological Survey Record 2002/2, 282 p.

266. Nutman A.P., Allaart J.H., Bridgwater D., Dimrot E., Rosing M.T., 1984. Stratigraphic and geochemical evidence for the depositional environment of the early Archaean Isua supracrustal belt, southern West Greenland. Precambrian Research 25 (4), 365–396. http://dx.doi.org/10.1016/0301-9268(84)90010-X.

267. Nutman A.P., Bennett V.C., Friend C.R.L., Jenner F., Wan Y., Liu D., 2009. Eoarchaean crustal growth in West Greenland (Itsaq Gneiss Complex) and in northeastern China (Anshan area): review and synthesis. In: P.A. Cawood, A. Kröner (Eds.), Earth accretionary systems in space and time. Geological Society, London, Special Publications, vol. 318, p. 127–154. http://dx.doi.org/10.1144/SP318.5.

268. Nutman A.P., Friend C.R.L., Baadsgaard H., McGregor V.R., 1989. Evolution and assembly of Archean gneiss terranes in the Godthåbsfjord region, southern West Greenland: structural, metamorphic and isotopic evidence. Tectonics 8 (3), 573–589. http://dx.doi.org/10.1029/TC008i003p00573.

269. Nutman A.P., Friend C.R.L., Kinny P.D., McGregor V.R., 1993. Anatomy of an Early Archean gneiss complex: 3900 to 3600 Ma crustal evolution in southern West Greenland. Geology 21 (5), 415–418. http://dx.doi.org/10.1130/0091-7613(1993)021<0415:AOAEAG>2.3.CO;2.

270. Nutman A.P., Kalsbeek F., Marker M., van Gool J.A.M., Bridgwater D., 1999. U-Pb zircon ages of Kangâmiut dykes and detrital zircons in metasediments in the Palaeoproterozoic Nagssugtoqidian Orogen (West Greenland). Clues to the precollisional history of the orogen. Precambrian Research 93 (1), 87–104. http://dx.doi.org/10.1016/S0301-9268(98)00099-0.

271. Nutman A.P., Kinny P.D., Compston W., Williams I.S., 1991. SHRIMP U-Pb zircon geochronology of the Narryer Gneiss Complex, Western Australia. Precambrian Research 52 (3–4), 275–300. http://dx.doi.org/10.1016/0301-9268(91) 90084-N.

272. Oberthür T., Davis D.W., Blenkinsop T.G., Höhndorf A., 2002. Precise U–Pb mineral ages, Rb–Sr and Sm-Nd systematics for the Great Dyke, Zimbabwe–constraints on late Archean events in the Zimbabwe craton and Limpopo belt. Precambrian Research 113 (3–4), 293–305. http://dx.doi.org/10.1016/S0301-9268(01)00215-7.

273. O’Brien H., Heilimo E., Heino P. 2015. The Archean Siilinjärvi carbonatite complex. Chapter 4.3. In: W. Maier, H. O’Brien, R. Lahtinen (Eds.), Mineral deposits of Finland. Elsevier, Amsterdam, p. 327–343. http://dx.doi.org/10.1016/B978-0-12-410438-9.00013-3.

274. O’Neil J., Carlson R.W., Francis D., Stevenson R.K., 2008. Neodymium-142 evidence for Hadean mafic crust. Science 321 (5897), 1828–1831. http://dx.doi.org/10.1126/science.1161925.

275. O'Neil J., Francis D., Carlson R., 2011. Implications of the Nuvvuagittuq Greenstone Belt for the formation of Earth's early crust. Journal of Petrology 52 (5), 985–1009. http://dx.doi.org/10.1093/petrology/egr014.

276. Paixão M.A.P., Oliveira E.P., 1998. The Lagoa da Vaca Complex: an Archaean layered anorthosite body on the western edge of the Uauá Block, Bahia, Brazil. Revista Brasileira de Geociências 28 (2), 201–208.

277. Parker A.J., 1990. Precambrian Provinces of South Australia – tectonic setting. In: F.E. Hughes (Ed.), Geology of the mineral deposits of Australia and Papua New Guinea. AusIMM, p. 985–990.

278. Patchett P.J., Kouvo O., Hedge C.E., Tatsumoto M., 1981. Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contributions to Mineralogy and Petrology 78 (3), 279–297. http://dx.doi.org/10.1007/BF00398923.

279. Patterson J.G., 1991. The Spi Group: a post-Archean, pre-2.1 Ga rift succession, Trans-Hudson hinterland. Canadian Journal of Earth Sciences 28 (11), 1863–1872. http://dx.doi.org/10.1139/e91-166.

280. Peltonen P., Kontinen A., Huhma H., 1996. Petrology and geochemistry of metabasalts from the 1.95 Ga Jormua Ophiolite, Northeastern Finland. Journal of Petrology 37 (6), 1359–1383. http://dx.doi.org/10.1093/petrology/37.6.1359.

281. Peltonen P., Kontinen A., Huhma H., 1998. Petrogenesis of the mantle sequence of the Jormua Ophiolite (Finland): melt migration in the upper mantle during Palaeoproterozoic continental break-up. Journal of Petrology 39 (2), 297–329. http://dx.doi.org/10.1093/petroj/39.2.297.

282. Perchuk L.L., Van Reenen D.D., Varlamov D.A., van Kal S.M., Tabatabaeimanesh, Boshoff R., 2008. P-T record of two highgrade metamorphic events in the Central Zone of the Limpopo Complex, South Africa. Lithos 103 (1–2), 70–105. http://dx.doi.org/10.1016/j.lithos.2007.09.011.

283. Percival J.A., 1994. Archean high-grade metamorphism. Chapter 9. In: K.C. Condie (Ed.), Archean crustal evolution. Developments in Precambrian Geology, vol. 11. Elsevier, Amsterdam, p. 357–410. http://dx.doi.org/10.1016/S0166-2635(08)70227-5.

284. Percival J.A., Krogh I.E., 1983. U-Pb zircon geochronology of the Kapuskaslng structural zone and vicinity in the Chapleau-Foleyet area, Ontario. Canadian Journal of Earth Sciences 20 (5), 830–843. http://dx.doi.org/10.1139/e83-073.

285. Percival J.A., Mortensen J.K., Stern R.A., Card K.D., Bégin N.J., 1992. Giant granulite terranes of northeastern Superior Province: the Ashuanipi complex and Minto block. Canadian Journal of Earth Sciences 29 (10), 2287–2308. http://dx.doi.org/10.1139/e92-179.

286. Percival J.A., Sanborn-Barrie M., Skulski T., Stott G.M., Helmstaedt H., White D.J., 2006. Tectonic evolution of the western Superior Province from NATMAP and Lithoprobe studies. Canadian Journal of Earth Sciences 43 (7), 1085–1117. http://dx.doi.org/10.1139/e06-062.

287. Percival J.A., Skulski T., 2000. Tectonothermal evolution of the northern Minto Block, Superior Province, Québec, Canada. The Canadian Mineralogist 38 (2), 345–378. http://dx.doi.org/10.2113/gscanmin.38.2.345.

288. Percival J.A., Stern R.A., Skulski T., Card K.D., Mortensen J.K., Bégin N.J., 1994. Minto block, Superior Province: missing link in deciphering tectonic assembly of the craton at 2.7 Ga. Geology 22 (9), 839–842. http://dx.doi.org/10.1130/0091-7613(1994)022<0839:MBSPML>2.3.CO;2.

289. Percival J.A., West G.F., 1994. The Kapuskasing uplift: a geological and geophysical synthesis. Canadian Journal of Earth Sciences 31 (7), 1256–1286. http://dx.doi.org/10.1139/e94-110.

290. Petrovskaya L.A., Mitrofanov F.P., Bayanova T.B., Serov P.A., 2007. The Archean Pulozero-Polnek-Tundra enderbitegranulite complex of the Central Kola Block: Stages and formation conditions (Kola Peninsula). Doklady Earth Sciences 416 (1), 1096–1999. http://dx.doi.org/10.1134/S1028334X07070252.

291. Pharaoh T.C., Brewer T.S., 1990. Spatial and temporal diversity of Early Proterozoic Volcanic Sequences – comparisons between the Baltic and Laurentian Shields. Precambrian Research 47 (3–4), 169–189. http://dx.doi.org/10.1016/0301-9268(90)90037-Q.

292. Piper J.D.A., 2015. The Precambrian supercontinent Palaeopangaea: two billion years of quasiintegrity and an appraisal of geological evidence. International Geology Review 57 (11–12), 1389–1417. http://dx.doi.org/10.1080/00206814.2014.942710.

293. Polat A., Fryer B.J., Appel P.W.U., Kalvig P., Kerrich R., Dilek Y., Yang Z., 2011. Geochemistry of anorthositic differentiated sills in the Archean (~2970 Ma) Fiskenæsset Complex, SW Greenland: Implications for parental magma compositions, geodynamic setting, and secular heat flow in arcs. Lithos 123 (1–4), 50–72. http://dx.doi.org/10.1016/j.lithos.2010.12.003.

294. Polat A., Hoffman A.W., Rosing M.T., 2002. Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intraoceanic subduction processes in the early Earth. Chemical Geology 184 (3–4), 231–254. http://dx.doi.org/10.1016/S0009-2541(01)00363-1.

295. Popov M.G., Sukholetova G.N., Morozov S.A., 1979. Geology of the Kamennoozero area. In: Early Precambrian Geology of Karelia. Karelian Branch of AS USSR, Petrozavodsk, p. 76–95 (in Russian) [Попов М.Г., Сухолетова Г.Н., Морозов С.А. Геология Каменноозерского района // Геология раннего докембрия Карелии. Петрозаводск: Карельский филиал АН СССР, 1979. С. 76–95].

296. Prokoph A., Ernst R.E., Buchan K.L., 2004. Time-series analysis of Large Igneous Provinces: 3500 Ma to present. The Journal of Geology 112 (1), 1–22. http://dx.doi.org/10.1086/379689.

297. Puchtel I.S., Hofmann A.W., Amelin Y.V., Garbe-Schonberg C.-D., Samsonov A.V., Shchipansky A.A., 1999. Combined mantle plume – island arc model for the formation of the 2.9 Ga Sumozero-Kenozero greenstone belt, SE Baltic Shield: isotope and trace element constraints. Geochimica et Cosmochimica Acta 63 (21), 3579–3595. http://dx.doi.org/10.1016/S0016-7037(99)00111-8.

298. Puchtel I.S., Hofmann A.W., Mezger K., Shchipansky A.A., Kulikov V.S., Kulikova V.V., 1996. Petrology of a 2.41 Ga remarkably fresh komatiitic basalt lava lake in Lion Hills, central Vetreny Belt, Baltic Shield. Contributions to Mineralogy and Petrology 124 (3), 273–290. http://dx.doi.org/10.1007/s004100050191.

299. Pushkarev Y.D., Kravchenko E.V., Shestakov G.I., 1978. Geochronological markers of the Precambrian of the Kola Peninsula. Nauka, Leningrad, 135 p. (in Russian) [Пушкарев Ю.Д., Кравченко Э.В., Шестаков Г.И. Геохронологические реперы докембрия Кольского полуострова. Л.: Наука, 1978. 136 с.].

300. Raith M., Srikantappa C., Ashamanjari K.G., Spiering B., 1990. The granulite terrane of the Nilgiri Hills (Southern India): characterization of high-grade metamorphism. In: D. Vielzeuf, Ph. Vidal (Eds.), Granulites and crustal evolution. Kluwer Academic Publishers, Dordrecht, p. 339–365. http://dx.doi.org/10.1007/978-94-009-2055-2_17.

301. Raith M.M., Srikantappa C., Buhl D., Koeler H., 1999. The Nilgiri enderbites, South India: nature and age constraints on protolith formation, high-grade metamorphism and cooling history. Precambrian Research 98 (1–2), 129–150. http://dx.doi.org/10.1016/S0301-9268(99)00045-5.

302. Rayner N.M., Stern R.A., Bickford M.E., 2005. Tectonic implications of new SHRIMP and TIMS U–Pb geochronology of rocks from the Sask Craton, Peter Lake Domain, and Hearne margin, Trans-Hudson Orogen, Saskatchewan. Canadian Journal of Earth Sciences 42 (4), 635–657. http://dx.doi.org/10.1139/e04-045.

303. Rigby M.J., 2009. Conflicting P–T paths within the Central Zone of the Limpopo Belt: A consequence of different thermobarometric methods? Journal of African Earth Sciences 54 (5), 111–126. http://dx.doi.org/10.1016/j.jafrearsci.2009.03.005.

304. Rigby M.J., Armstrong R.A., 2011. SHRIMP dating of titanite from metasyenites in the Central Zone of the Limpopo Belt, South Africa. Journal of African Earth Sciences 59 (1), 149–154. http://dx.doi.org/10.1016/j.jafrearsci.2010.07.004.

305. Rigby M.J., Mouri H., Brandl G., 2008. P-T conditions and the origin of quartzo-feldspathic veins in metasyenites from the Central Zone of the Limpopo Belt, South Africa. South African Journal of Geology 111 (2–3), 313–332. http://dx.doi.org/10.2113/gssajg.111.2-3.313.

306. Rivers T., 1997. Lithotectonic elements of the Grenville Province: review and tectonic implications. Precambrian Research 86 (3–4), 117–154. http://dx.doi.org/10.1016/S0301-9268(97)00038-7.

307. Rivers T., 2009. The Grenville Province as a large hot long-duration collisional orogen – insights from the spatial and thermal evolution of its orogenic fronts. In: J.B. Murphy, J.D. Keppie, A.J. Hynes (Eds.), Ancient orogens and modern analogues. Geological Society, London, Special Publications, vol. 327, 405–444. http://dx.doi.org/10.1144/SP327.17.

308. Rivers T., Ketchum J., Indares A., Hynes A., 2002. The high pressure belt in the Grenville Province: architecture, timing and exhumation. Canadian Journal of Earth Sciences 39 (5), 867–893. http://dx.doi.org/10.1139/e02-025.

309. Robb L.J., Meyer F.M., 1995. The Witwatersrand basin, South Africa: Geological framework and mineralization processes. Ore Geology Reviews 10 (2), 67–94. http://dx.doi.org/10.1016/0169-1368(95)00011-9.

310. Roering C., van Reenen D.D., de Wit M.J., Smit C.A., De Beer J.H., Van Schalkwyk J.F., 1992a. Structural geological and metamorphic significance of the Kaapvaal Craton – Limpopo Belt contact. Precambrian Research 55 (1–4), 69–80. http://dx.doi.org/10.1016/0301-9268(92)90015-G.

311. Roering C., van Reenen D.D., Smit C.A., Barton J.M., De Beer J.H., de Wit M.J., Stettler E.H., Van Schalkwyk J.F., Stevens G., Pretorius S., 1992b. Tectonic model for the evolution of the Limpopo Belt. Precambrian Research 55 (1–4), 539–552. http://dx.doi.org/10.1016/0301-9268(92)90044-O.

312. Rogers J.J.W., 1996. A history of continents in the past three billion years. The Journal of Geology 104 (1), 91–107.

313. Ross G.M., Eaton D.W., 2002. Proterozoic tectonic accretion and growth of Western Laurentia: Results from lithoprobe studies in Northern Alberta. Canadian Journal of Earth Sciences 39 (3), 313–329. http://dx.doi.org/10.1139/e01-081.

314. Rudnick R.L., Fountain D.M., 1995. Nature and composition of continental crust: a lower crustal perspective. Reviews of Geophysics 33 (3), 267–309. http://dx.doi.org/10.1029/95RG01302.

315. Samsonov A.V., Bibikova E.V., Larionova Yu.O., Petrova A.Yu., Puchtel I.S., 2004. Magnesian granitoids (sanukitoids) of the Kostomuksha area, Western Karelia: Petrology, geochronology, and tectonic environment of formation. Petrology 12 (5), 437–468.

316. Sandiford M., 1989. Horizontal structures in granulite terrain: a record of mountain building or mountain collapse? Geology 17 (5), 449–452. http://dx.doi.org/10.1130/0091-7613(1989)017<0449:HSIGTA>2.3.CO;2.

317. Santosh M., Liu S.J., Tsunogae T., Li J.H., 2012. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism. Precambrian Research 222–223, 77–106. http://dx.doi.org/10.1016/j.precamres.2011.05.003.

318. Santosh M., Maruyama S., Yamamoto S., 2009. The making and breaking of supercontinents: Some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Research 15 (3–4), 324–341. http://dx.doi.org/10.1016/j.gr.2008.11.004.

319. Santosh M., Yang Q.-Y., Teng X., Tang L., 2015. Paleoproterozoic crustal growth in the North China Craton: Evidence from the Lüliang Complex. Precambrian Research 263, 197–231. http://dx.doi.org/10.1016/j.precamres.2015.03.015.

320. Schultz M.E.J., Chacko T., Heaman L.M., Sandeman H.A., Simonetti A., Creaser R.A., 2007. Queen Maud block: A newly recognized Paleoproterozoic (2.4–2.5 Ga) terrane in northwest Laurentia. Geology 35 (8), 707–710. http://dx.doi.org/10.1130/G23629A.1.

321. Scott D.J., 1999. U-Pb geochronology of the eastern Hall Peninsula, Southern Baffin Island, Canada: a northern link between the Archean of West Greenland and the Palaeoproterozoic Torngat Orogen of northern Labrador. Precambrian Research 93 (1), 5–26. http://dx.doi.org/10.1016/S0301-9268(98)00095-3.

322. Scott D.J., St.-Onge M.R., Lucas S.B., Helmstaedt H., 1991. Geology and geochemistry of the Early Proterozoic Purtuniq Ophiolite, Cape Smith Belt, Northern Quebec, Canada. In: T. Peters, A. Nicolas, R.G. Coleman (Eds.), Ophiolite genesis and evolution of the oceanic lithosphere. Kluwer, Amsterdam, p. 817–849. http://dx.doi.org/10.1007/978-94-011-3358-6_41.

323. Scrimgeour I., Close D., 1999. Regional high-pressure metamorphism during intracratonic deformation: the Petermann Orogeny, Central Australia. Journal of Metamorphic Geology 17 (5), 557–572. http://dx.doi.org/10.1046/j.1525-1314.1999.00217.x.

324. Shan H., Zhai M., Oliveira E.P., Santosh M., Wangea F., 2015. Convergent margin magmatism and crustal evolution during Archean-Proterozoic transition in the Jiaobei terrane: Zircon U–Pb ages, geochemistry, and Nd isotopes of amphibolites and associated grey gneisses in the Jiaodong complex, North China Craton. Precambrian Research 264, 98–118. http://dx.doi.org/10.1016/j.precamres.2015.04.008.

325. Sharkov E.V., 2010. Middle-proterozoic anorthosite–rapakivi granite complexes: An example of within-plate magmatism in abnormally thick crust: Evidence from the East European Craton. Precambrian Research 183 (4), 689–700. http://dx.doi.org/10.1016/j.precamres.2010.08.008.

326. Sharkov E.V., Smolkin V.F., 1997. The Early Proterozoic Pechenga–Varzuga Belt: A case of Precambrian back-arc spreading. Precambrian Research 82 (1–2), 133–151. http://dx.doi.org/10.1016/S0301-9268(96)00041-1.

327. Shchipansky A.A., Samsonov A.V., Bibikova E.V., Babarina I.I., Konilov A.N., Krylov K.K., Slabunov A.I., Bogina M.M., 2004. 2.8 Ga boninite-hosting partial suprasubduction zone ophiolite sequences from the North Karelian greenstone belt, NE Baltic Shield, Russia. In: T. Kusky (Ed.), Precambrian ophiolites and related rocks. Development in Precambrian Geology, vol. 13. Elsevier, Amsterdam, p. 425–486. http://dx.doi.org/10.1016/S0166-2635(04)13014-4.

328. Shirey S.B., Kamber B.S., Whitehouse M.J., Mueller P.A., Basu A.R., 2008. A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: Implications for the onset of plate tectonic subduction. In: K.C. Condie, V. Pease (Eds.), When Did Plate Tectonics Begin on Planet Earth? Geological Society of America Special Papers, vol. 440, p. 1–29. http://dx.doi.org/10.1130/2008.2440(01).

329. Silva L.C., Armstrong R., Delgado I.M., Pimentel M., Arcanjo J.B., de Melo R.C., Teixeira L.R., Jost H., Cardoso Filho J.M., Pereira L.H.M., 2002. Reavaliação da evolução geológica em terrenos Pré-Cambrianos brasileiros com base em novos dados U-Pb shrimp, Parte I: limite centro-oriental do Cráton São Francisco na Bahia. Revista Brasileira de Geociências 32 (4), 501–512.

330. Skridlaite G., Motuza G., 2001. Precambrian domains in Lithuania: evidence of terrane tectonics. Tectonophysics 339, 113–133. http://dx.doi.org/10.1016/S0040-1951(01)00035-X.

331. Skuf’in P.K., Theart H.F.J., 2005. Geochemical and tectono-magmatic evolution of the volcano-sedimentary rocks of Pechenga and other greenstone fragments within the Kola Greenstone Belt, Russia. Precambrian Research 141 (1–2), 1–48. http://dx.doi.org/10.1016/j.precamres.2005.07.004.

332. Slabunov A.I., Lobach-Zhuchenko S.B., Bibikova E.V., Sorjonen-Ward P., Balangansky V.V., Volodichev O.I., Shchipansky A.A., Svetov S.A., Chekulaev V.P., Arestova N.A., Stepanov V.S., 2006. The Archean nucleus of the Fennoscandian (Baltic) Shield. In: D.G. Gee, R.A. Stephenson (Eds.), European lithosphere dynamics. Geological Society, London, Memoirs, vol. 32, p. 627–644. http://dx.doi.org/10.1144/GSL.MEM.2006.035.01.37.

333. Smithies R.H., Champion D.C., 2000. The Archaean high-Mg diorite suite: Links to Tonalite-Trondhjemite-Granodiorite magmatism and implications for early Archaean crustal growth. Journal of Petrology 41 (12), 1653–1671. http://dx.doi.org/10.1093/petrology/41.12.1653.

334. Smithies R.H., Howard H.M., Evins P.M., Kirkland C.L., Kelsey D.E., Hand M., Wingate M.T.D., Collins A.S., Belousova E., 2011. High-temperature granite magmatism, crust-mantle interaction and the Mesoproterozoic intracontinental evolution of the Musgrave Province, Central Australia. Journal of Petrology 52 (5), 931–958. http://dx.doi.org/10.1093/petrology/egr010.

335. Smolkin V.F., Mitrofanov F.P., Avedisyan A.A. et al., 1995. Magmatism, Sedimentogenesis, and Geodynamics of the Pechenga Paleorift. Kola Sci. Center, Russian Acad. Sci., Apatity, 256 p. (in Russian) [Смолькин В.Ф., Митрофанов Ф.П., Аведисян А.А. и др. Магматизм, седиментогенез и геодинамика Печенгской палеорифтогенной структуры. Апатиты: КНЦ РАН, 1995. 256 c.].

336. Snoeyenbos D.R., Williams M.L., Hanmer S., 1995. Archean high-pressure metamorphism in the western Canadian Shield. European Journal of Mineralogy 7 (6), 1251–1272. http://dx.doi.org/10.1127/ejm/7/6/1251.

337. Söderlund U., Hofmann A., Klausen M.B., Olsson J.R., Ernst R.E., Persson P.-O., 2010. Towards a complete magmatic barcode for the Zimbabwe craton: Baddeleyite U–Pb dating of regional dolerite dyke swarms and sill complexes. Precambrian Research 183 (3), 388–398. http://dx.doi.org/10.1016/j.precamres.2009.11.001.

338. Sorjonen-Ward P., Clauoé-Long J., Huhma H., 1994. SHRIMP isotope studies of granulite zircons and their relevance to early Proterozoic tectonics in northern Fennoscandia. In: M.A. Lanphere, G.B. Dalrymple, B.D. Turrin (Eds.), Abstracts of the Eighth International Conference on Geochronology, Cosmochronology, and Isotope Geology. U.S. Geological Survey circular 1107, p. 299.

339. Stern R.J., 2008. Modern-style plate tectonics began in Neoproterozoic time: An alternative interpretation of Earth's tectonic history. In: K.C. Condie, V. Pease (Eds.), When did plate tectonics begin on planet Earth? Geological Society of America Special Papers, vol. 440, p. 265–280. http://dx.doi.org/10.1130/2008.2440(13).

340. Stern R.A., Lukas S.B., 1994. U-Pb zircon age constraints on the early tectonic history of the Flin Flon accretionary collage, Saskatchewan. In: Radiogenic age and isotopic studies: Report 8. Geological Survey of Canada, Current Research 1994-F, p. 75–86.

341. Stone D., Semenyna L., 2004. Petrography, Chemistry and Diamond Characteristics of Heterolithic Breccia and Lamprophyre Dikes at Wawa, Ontario. Ontario Geological Survey Open File Report 6134, 39 p.

342. St-Onge M.R., Lukas S.B., Scott D.J., Wodichka N., 1999. Upper and lower plate juxtaposition, deformation and metamorphism during crustal convergence, Trans-Hudson Orogen (Quebeck-Baffin segment), Canada. Precambrian Research 93 (1), 27–49. http://dx.doi.org/10.1016/S0301-9268(98)00096-5.

343. St-Onge M.R., Wodichka N., Ijewliw O., 2007. Polymetamorphic evolution of the Trans-Hudson Orogen, Baffin Island, Canada: Integration of petrological, structural and geochronological data. Journal of Petrology 48 (2), 271–302. http://dx.doi.org/10.1093/petrology/egl060.

344. Svetov S.A., 1997. Komatiite-tholeiite Associations of the Vedlozersk-Segozersk Greenstone Belt in Central Karelia. Karelian Scientific Center of RAS, Petrozavodsk, 172 p. (in Russian) [Светов С.А. Коматиит-толеитовые ассоциации Ведлозерско-Сегозерского зеленокаменного пояса Центральной Карелии. Петрозаводск: КНЦ РАН, 1997. 172 с.].

345. Svetov S.A., Svetova A.I., Huhma H., 2001. Geochemistry of the komatiite-tholeiite rock association in the VedlozeroSegozero Archean greenstone belt, Central Karelia. Geochemistry International 39 (1), 24–38.

346. Symons D.T.A., Harris M.J., 2000. The ~1830 Ma Trans-Hudson hairpin from paleomagnetism of the Wapisu gneiss dome, Kisseynew Domain, Manitoba. Canadian Journal of Earth Sciences 37 (6), 913–922. http://dx.doi.org/10.1139/e99-043.

347. Taran L.N., Bogdanova S.V., 2001. The Fennoscandia-Sarmatia junction in Belarus: new inferences from a PT-study. Tectonophysics 339 (1–2), 193–214. http://dx.doi.org/10.1016/S0040-1951(01)00039-7.

348. Taylor P.N., Kalsbeek F., 1990. Dating the metamorphism of Precambrian marbles: Examples from Proterozoic mobile belts in Greenland. Chemical Geology 86 (1), 21–28. http://dx.doi.org/10.1016/0168-9622(90)90003-U.

349. Thompson A.B., Schulmann K., Jezek J., Tolar V., 2001. Thermally softened continental extension zones (arcs and rifts) as precursors to thickened orogenic belts. Tectonophysics 332 (1–2), 115–141. http://dx.doi.org/10.1016/S0040-1951(00)00252-3.

350. Thompson P.H., 1989. An empirical model for metamorphic evolution of the Archaean Slave Province and adjacent Thelon Tectonic Zone, north-western Canadian Shield. In: J.S. Daly, R.A. Cliff, B.W.D. Yardley (Eds.), Evolution of metamorphic belts. Geological Society, London, Special Publications, vol. 43, p. 245–263. http://dx.doi.org/10.1144/GSL.SP.1989.043.01.17.

351. Tollo R.P., Corriveau L., McLelland J., Bartholomew M.J., 2004. Proterozoic tectonic evolution of the Grenville orogen in North America: An introduction. In: R.P. Tollo, L. Corriveau, J. McLelland, M.J. Bartholomew (Eds.), Proterozoic tectonic evolution of the Grenville orogen in North America. Geological Society of America Memoirs, vol. 197, p. 1–18. http://dx.doi.org/10.1130/0-8137-1197-5.1.

352. Trubitsyn V.P., Trubitsyn А.P., 2005. Evolution of mantle plumes and uplift of continents during the Pangea breakup. Russian Journal of Earth Sciences 7 (3), ES3001. http://dx.doi.org/10.2205/2005ES000179.

353. Tucker N.M., Handa M., Kelsey D.E., Dutch R.A., 2015. A duality of timescales: Short-lived ultrahigh temperature metamorphism preserving a long-lived monazite growth history in the Grenvillian Musgrave–Albany–Fraser Orogen. Precambrian Research 264, 204–234. http://dx.doi.org/10.1016/j.precamres.2015.04.015.

354. Tuisku P., Huhma H., 2006. Evolution of migmatitic granulite complexes: Implications from Lapland Granulite Belt, Part II: Isotopic dating. Bulletin of the Geological Society of Finland 78 (1–2), 143–175.

355. Tuisku P., Mikkola P., Huhma H., 2006. Evolution of migmatitic granulite complexes: Implications from Lapland Granulite Belt, Part I: Metamorphic geology. Bulletin of the Geological Society of Finland 78 (1–2), 71–105.

356. Unrug R., 1992. The supercontinent cycle and Gondwanaland assembly: component cratons and the timing of suturing events. Journal of Geodynamics 16 (4), 215–240. http://dx.doi.org/10.1016/0264-3707(92)90011-G.

357. Valley J.W., Peck W.H., King E.M., Wilde S.A., 2002. A cool early Earth. Geology 30 (4), 351–354. http://dx.doi.org/10.1130/0091-7613(2002)030<0351:ACEE>2.0.CO;2.

358. Van Kranendonk M.J., 1996. Tectonic evolution of the Paleoproterozoic Torngat Orogen: Evidence from pressuretemperature-time-deformation paths in the North River map area, Labrador. Tectonics 15 (4), 843–869. http://dx.doi.org/10.1029/95TC03771.

359. Van Reenen D.D., Boshoff R., Smit C.A., Perchuk L.L., Kramers J.D., McCourt S., Armstrong R.A., 2008. Geochronological problems related to polymetamorphism in the Limpopo Complex, South Africa. Gondwana Research 14 (4), 644–662. http://dx.doi.org/10.1016/j.gr.2008.01.013.

360. Van Reenen D.D., Kramers J.D., McCourt S., 2011a. Introduction. In: D.D. Van Reenen, J.D. Kramers, S. McCourt, L.L. Perchuk (Eds.), Origin and evolution of Precambrian high-grade gneiss terranes, with special emphasis on the Limpopo complex of Southern Africa. Geological Society of America Memoirs, vol. 207, p. vii–ix. http://dx.doi.org/10.1130/2011.1207(00).

361. Van Reenen D.D., Roering C., Ashwal L.D., De Wit M.J., 1992a. Foreword. Precambrian Research 55 (1–4), ix–xi. http://dx.doi.org/10.1016/0301-9268(92)90007-B.

362. Van Reenen D.D., Roering C., Ashwal L.D., De Wit M.J., 1992b. Regional geological setting of the Limpopo Belt. Precambrian Research 55 (1–4), 1–5. http://dx.doi.org/10.1016/0301-9268(92)90009-D.

363. Van Reenen D.D., Smit C.A., Perchuk L.L., Roering C., Boshoff R., 2011b. Thrust exhumation of the Neoarchean ultrahightemperature Southern Marginal Zone, Limpopo Complex: Convergence of decompression-cooling paths in the hanging wall and prograde P-T paths in the footwall. In: D.D. Van Reenen, J.D. Kramers, S. McCourt, L.L. Perchuk (Eds.), Origin and Evolution of Precambrian High-Grade Gneiss Terranes, with Special Emphasis on the Limpopo Complex of Southern Africa. Geological Society of America Memoirs, vol. 207, p. 189–212. http://dx.doi.org/10.1130/2011.1207(11).

364. Van Schmus W.R., Green J.C., Halls H.C., 1982. Geochronology of Keweenawan rocks of the Lake Superior region: A summary. In: R.J. Wold, W.J. Hinze (Eds.), Geology and tectonics of the Lake Superior basin. Geological Society of America Memoirs, vol. 156, p. 165–172. http://dx.doi.org/10.1130/MEM156-p165.

365. Vervoort J.D., Wirth K., Kennedy B., Sandland T., Harpp K.S., 2007. The magmatic evolution of the Midcontinent Rift: New geochronologic and geochemical evidence from felsic magmatism. Precambrian Research 157 (1–4), 235–268. http://dx.doi.org/10.1016/j.precamres.2007.02.019.

366. Vetrin V.R., Lepekhina E.N., Paderin I.P., Rodionov N.V., 2009. Stages of the lower crust formation of the Belomorian Mobile Belt, Kola Peninsula. Doklady Earth Sciences 425 (1), 269–273. http://dx.doi.org/10.1134/S1028334X09020214.

367. Voice P.J., Kowalewski M., Eriksson K.A., 2011. Quantifying the timing and rate of crustal evolution: Global compilation of radiometrically dated detrital zircon grains. The Journal of Geology 119 (2), 109–126. http://dx.doi.org/10.1086/658295.

368. Volkert R.A., Johnson C.A., Tamashausky A.V., 2000. Mesoproterozoic graphite deposits, New Jersey Highlands: geologic and stable isotopic evidence for possible algal origins. Canadian Journal of Earth Sciences 37 (12), 1665–1675. http://dx.doi.org/10.1139/e00-050.

369. Vuollo J., 1994. Palaeoproterozoic Basic Igneous Events in Eastern Fennoscandian Shield between 2.45 and 1.97 Ga. Acta Universitatis Ouluensis. Series A, Scientiae rerum naturalium, No. 250, 32 p.

370. Wang Zh, Wilde S.A., Wan J., 2010. Tectonic setting and significance of 2.3–2.1 Ga magmatic events in the Trans-North China Orogen: New constraints from the Yanmenguan mafic–ultramafic intrusion in the Hengshan–Wutai–Fuping area. Precambrian Research 178 (1–4), 27–42. http://dx.doi.org/10.1016/j.precamres.2010.01.005.

371. Wardle R.J., Rivers T., Gower C.F., Nunn G.A.G., Thomas A., 1986. The Northeastern Grenville Province: New Insights. In: J.M. Moore, A. Davidson, A.J. Baer (Eds.), The Grenville Province. Geological Association of Canada Special Paper, vol. 31, p. 13–29.

372. Whalen J.B., Wodicka N., Taylor B.E., Jackson G.D., 2010. Cumberland batholith, Trans-Hudson Orogen, Canada: Petrogenesis and implications for Paleoproterozoic crustal and orogenic processes. Lithos 117 (1–4), 99–118. http://dx.doi.org/10.1016/j.lithos.2010.02.008.

373. White D.J., Thomas M.D., Jones A.G., Hope J., Németh B., Hajnal Z., 2005. Geophysical transect across a Paleoproterozoic continent-continent collision zone: The Trans-Hudson Orogen. Canadian Journal of Earth Sciences 42 (4), 385–402. http://dx.doi.org/10.1139/e05-002.

374. Wiebe R.A., 1980. Anorthositic magmas and the origin of Proterozoic anorthosite massifs. Nature 286 (5773), 564–567. http://dx.doi.org/10.1038/286564a0.

375. Wilde S.A., Valley J.W., Peck W.H., Graham C.M., 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409 (6817), 175–178. http://dx.doi.org/10.1038/35051550.

376. Wilson J.T., 1963. Hypothesis of Earth's Behaviour. Nature 198 (4884), 849–865. http://dx.doi.org/10.1038/198925a0.

377. Windley B., 1992, Proterozoic collisional and accretionary orogens. In: K.C. Condie (Ed.), Proterozoic crustal evolution. Developments in Precambrian Geology, vol. 10, p. 419–446. http://dx.doi.org/10.1016/S0166-2635(08)70125-7.

378. Windley B.F., Bishop F.C., Smith J.V., 1981. Metamorphosed layered igneous complexes in Archean granulite-gneiss belts. Annual Review of Earth and Planetary Sciences 9, 175–196. http://dx.doi.org/10.1146/annurev.ea.09.050181.001135.

379. Whitmeyer S.J., Karlstrom K.E., 2007. Tectonic model for the Proterozoic growth of North America. Geosphere 3 (4), 220–259. http://dx.doi.org/10.1130/GES00055.1.

380. Wodicka N., Ketchum J.W.F., Jamieson R.A., 2000. grenvillian metamorphism of monocyclic rocks, Georgian Bay, Ontario, Canada: implications for convergence history. The Canadian Mineralogist 38 (2), 471–510. http://dx.doi.org/10.2113/gscanmin.38.2.471.

381. Woolley A.R., Kjarsgaard B.A., 2008. Carbonatite occurrences of the world: map and database. Geological Survey of Canada Open File 5796, 1 CD-ROM + 1 map.

382. Wyman D., Kerrich R., 2010. Mantle plume – volcanic arc interaction: consequences for magmatism, metallogeny, and cratonization in the Abitibi and Wawa subprovinces, Canada. Canadian Journal of Earth Sciences 47 (5), 565–589. http://dx.doi.org/10.1139/E09-049.

383. Yang Q.-Y., Santosh M., 2015. Paleoproterozoic arc magmatism in the North China Craton: No Siderian global plate tectonic shutdown. Gondwana Research 28 (1), 82–105. http://dx.doi.org/10.1016/j.gr.2014.08.005.

384. Yang Q.-Y., Santosh M., Pradeepkumar A.P., Shaji E., Prasanth R.S., Dhanil Dev S.G., 2015. Crustal evolution in the western margin of the Nilgiri Block, southern India: Insights from zircon U–Pb and Lu–Hf data on Neoarchean magmatic suite. Journal of Asian Earth Sciences 113 (Part 2), 766–777. http://dx.doi.org/10.1016/j.jseaes.2015.02.023.

385. Zeh A., Gerdes A., Barton J. Jr., Klemd R., 2010. U-Th-Pb and Lu-Hf systematics of zircon from TTG’s leucosomes, metaanorthosites and quartzites of the Limpopo Belt (South Africa): constraints for the formation, recycling and metamorphism of Palaeoarchaean crust. Precambrian Research 179 (1–4), 50–68. http://dx.doi.org/10.1016/j.precamres.2010.02.012.

386. Zeh A., Gerdes A., Klemd R., Barton J.M., 2007. Archaean to Proterozoic crustal evolution in the Central Zone of the Limpopo Belt (South Africa-Botswana): constraints from combined U–Pb and Lu–Hf isotope analyses of zircon. Journal of Petrology 48 (8), 1605–1639. http://dx.doi.org/10.1093/petrology/egm032.

387. Zeh A., Ovtcharova M., Wilson A.H., Schaltegger U., 2015. The Bushveld complex was emplaced and cooled in less than one million years – results of zirconology, and geotectonic implications. Earth and Planetary Science Letters 418, 103–114. http://dx.doi.org/10.1016/j.epsl.2015.02.035.

388. Zhang H.-F., Zhai M.-G., Santosh M., Wang H.-Z., Zhao L., Ni Z.-Y., 2014. Paleoproterozoic granulites from the Xinghe graphite mine, North China Craton: Geology, zircon U–Pb geochronology and implications for the timing of deformation, mineralization and metamorphism. Ore Geology Reviews 63, 478–497. http://dx.doi.org/10.1016/j.oregeorev.2014.03.014.

389. Zhang S.-H., Liu S.-W., Zhao Y., Yang J.-H., Song B., Liu H.-M., 2007. The 1.75–1.68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen. Precambrian Research 155 (3–4), 287–312. http://dx.doi.org/10.1016/j.precamres.2007.02.008.

390. Zhao G.C., Cawood P.A., Wilde S.A., Lu L.Z., 2001. High-pressure granulites (retrograded eclogites) from the Hengshan Complex North China Craton: petrology and tectonic implications. Journal of Petrology 42 (6), 1141–1170. http://dx.doi.org/10.1093/petrology/42.6.1141.

391. Zhao G.C., Sun M., Wilde S.A., Li S.Z., 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research 136 (2), 177–202. http://dx.doi.org/10.1016/j.precamres.2004.10.002.

392. Zhao T.-P., Chen W., Zhou M.-F., 2009. Geochemical and Nd–Hf isotopic constraints on the origin of the ~1.74-Ga Damiao anorthosite complex, North China Craton. Lithos 113 (3–4), 673–690. http://dx.doi.org/10.1016/j.lithos.2009.07.002.

393. Zhong S., Zhang N., Li Z.-X., Roberts J.H., 2007. Supercontinent cycles, true polar wander, and very long-wave length mantle convection. Earth and Planetary Science Letters 261 (3–4), 551–564. http://dx.doi.org/10.1016/j.epsl.2007.07.049.

394. Zozulya D.R., Bayanova T.B., Serov P.N., 2007. Age and isotopic geochemical characteristics of Archean carbonatites and alkaline rocks of the Baltic Shield. Doklady Earth Sciences 415 (2), 874–879. http://dx.doi.org/10.1134/S1028334X07060104.


Рецензия

Для цитирования:


Минц М.В., Эрикссон П.Г. ДЛИННОПЕРИОДНЫЕ ИЗМЕНЕНИЯ В СООТНОШЕНИИ ПРОЦЕССОВ ТЕКТОНО-ПЛИТНОГО И МАНТИЙНО-ПЛЮМОВОГО ПРОИСХОЖДЕНИЯ В ДОКЕМБРИИ. Геодинамика и тектонофизика. 2016;7(2):173-232. https://doi.org/10.5800/GT-2016-7-2-0203

For citation:


Mints M.V., Eriksson P.G. SECULAR CHANGES IN RELATIONSHIPS BETWEEN PLATE-TECTONIC AND MANTLE-PLUME ENGENDERED PROCESSES DURING PRECAMBRIAN TIME. Geodynamics & Tectonophysics. 2016;7(2):173-232. https://doi.org/10.5800/GT-2016-7-2-0203

Просмотров: 1794


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)