Preview

Advanced search

Physical modeling experiments to study periodic activation of faults in seismic zones

https://doi.org/10.5800/GT-2018-9-3-0366

Abstract

Our study aimed to find a mechanism that controls preparation and subsequent full seismic activation of large faults that may act as sources of strong earthquakes. A large fault was physically modeled to investigate the dynamics of its deformation. The experiments were conducted on elastoviscoplastic and elastic models of the lithosphere. A digital camera was used to capture images in the course of the modeling experiments. The digital image correlation method (DIC) detected the moments of impulse activation and displacements along the entire fault or its major segment. Between the activation moments, the fault structure consists of segments, including active ones. Activation is directional and involves a few large segments of the fault, then numerous small ruptures, and the latter are gradually degenerating. The long-term deformation dynamics of the fault is represented by a regular sequence of its full activations. In most cases, each moment of activation correlates with a minimum dip angle of the repeatability curve (β) and a maximum value of information entropy (Si). We analysed in detail the deformation dynamics of the fault and in its wings between two full activation that occurred in a regular pattern, including the phases of regression and progression of the deformation process. The analysis revealed two similar scenarios in the evolution of the active segments and plastic micro slip faults within the active segments. In some intervals of time, deformation takes place considerably differently on the segments and the plastic micro slip faults. Such differences suggest that in the studies attempting to statistically predict and assess a large and potentially seismically hazardous fault zone, this zone should be considered spatially subdivided into a central narrow subzone (including the main fault plane) and two wide subzones framing the fault wings. According to our physical modeling results, the central subzone can be up to10 km wide, and the total width of all the subzones can amount to100 km or more. This study contributes to the development of the concepts of geodynamics of large faults in the seismic zones of the lithosphere and investigates one of the possible mechanisms preparing strong earthquakes in the seismic zones.

About the Authors

S. A. Bornyakov
Institute of the Earth's Crust, Siberian Branch of RAS; Irkutsk State University
Russian Federation

Sergei A. Bornyakov, Candidate of Geology and Mineralogy, Senior Researcher

128 Lermontov street, Irkutsk 664033; 3 Lenin street, Irkutsk 664003



I. A. Panteleev
Institute of Continuous Media Mechanics, Ural Branch of RAS
Russian Federation

Ivan A. Panteleev, Candidate of Physics and Mathematics, Senior Researcher

1 Academician Korolev street, Perm 614013



A. V. Cheremnykh
Institute of the Earth's Crust, Siberian Branch of RAS
Russian Federation

Alexander V. Cheremnykh, Candidate of Geology and Mineralogy, Senior Researcher

128 Lermontov street, Irkutsk 664033



A. A. Karimova
Institute of the Earth's Crust, Siberian Branch of RAS; Irkutsk State University
Russian Federation

Anastassia A. Karimova, Lead Engineer

128 Lermontov street, Irkutsk 664033



References

1. Aki K., 1965. Maximum likelihood estimate of b in the formula logN=a–bM and its confidence limits. Bulletin of the Earthquake Research Institute, Tokyo University 43, 237–239.

2. Amitrano D., 2003. Brittle‐ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. Journal of Geophysical Research: Solid Earth 108 (B1), 2044. https://doi.org/10.1029/2001JB000680.

3. Bak P., Tang C., 1989. Earthquakes as a self‐organized critical phenomenon. Journal of Geophysical Research: Solid Earth 94 (B11), 15635–15637. https://doi.org/10.1029/JB094iB11p15635.

4. Berg E., 1968. Relation between earthquake foreshocks, stress and mainshocks. Nature 219 (5159), 1141–1143. https://doi.org/10.1038/2191141a0.

5. Борняков С.А. Количественный анализ параметров разномасштабных сдвигов // Геология и геофизика. 1990. Т. 31. № 10. С. 34–42.

6. Bornyakov S.A., Panteleev I.A., Tarasova A.A., 2016a. Dynamics of intrafault deformation waves: results of physical simulation. Doklady Earth Sciences 47(2), 1316–1318. http://link.springer.com/journal/11471/471/2/page/1 (2), 1316–1318. https://doi.org/10.1134/S1028334X16120175.

7. Борняков С.А., Пантелеев И.А., Тарасова А.А. Дискретно-волновая динамика деформаций в сдвиговой зоне: результаты физического моделирования // Геодинамика и тектонофизика. 2016. Т. 7. № 2. С. 289–302. https://doi.org/10.5800/GT-2016-7-2-0207.

8. Борняков С.А., Семинский К.Ж., Буддо В.Ю., Мирошниченко А.И., Черемных А.В., Черемных А.С., Тарасова А.А. Основные закономерности разломообразования в литосфере (по результатам физического моделирования) // Геодинамика и тектонофизика. 2014. Т. 5. № 4. С. 823–861. https://doi.org/10.5800/GT-2014-5-4-0159.

9. Brace W.F., Byerlee J.D., 1966. Stick-slip as a mechanism for earthquakes. Science 153 (3739), 990–992. https://doi.org/10.1126/science.153.3739.990.

10. Choi J.H., Edwards P., Ko K., Kim Y.S., 2016. Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Science Reviews 152, 70–87. https://doi.org/10.1016/j.earscirev.2015.11.006.

11. Goebel T.H., Kwiatek G., Becker T.W., Brodsky E.E., Dresen G., 2017. What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments. Geology 45 (9), 815–818. https://doi.org/10.1130/G39147.1.

12. Golitsyn C.S., 1996. Earthquakes from the standpoint of scaling theory. Transactions (Doklady) of the Russian Academy of Sciences, Earth Science Sections 346 (1), 166–169.

13. Guđmundsson A., Mohajeri N., 2013. Relations between the scaling exponents, entropies, and energies of fracture networks. Bulletin de la Société Géologique de France 184 (4–5), 373–382. https://doi.org/10.2113/gssgfbull.184.4-5.373.

14. Гзовский М.В. Основы тектонофизики. М.: Наука, 1975. 536 с.

15. Ma J., Guo Y., Sherman S.I., 2014. Accelerated synergism along a fault: A possible indicator for an impending major earthquake. Geodynamics & Tectonophysics 5 (2), 387–399. https://doi.org/10.5800/GT-2014-5-2-0134.

16. Ma J., Sherman S.I., Guo Y.S., 2012. Identification of meta-instable stress state based on experimental study of evolution of the temperature field during stick-slip instability on a 5° bending fault. Science China Earth Sciences 55 (6), 869–881. https://doi.org/10.1007/s11430-012-4423-2.

17. Мячкин В.И., Костров Б.В., Соболев Г.А., Шамина О.Г. Основы физики очага и предвестники землетрясений // Физика очага землетрясения / Ред. М.А. Садовский. М.: Наука, 1975. С. 6–29.

18. Nanjo K.Z., Hirata N., Obara K., Kasahara K., 2012. Decade‐scale decrease in b value prior to the M9‐class 2011 Tohoku and 2004 Sumatra quakes. Geophysical Research Letters 39 (20), L20304. https://doi.org/10.1029/2012GL052997.

19. Осокина Д.Н. Пластичные и упругие низкомодульные оптически-активные материалы для исследования напряжений в земной коре методом моделирования. М.: Изд-во АН СССР, 1963. 196 c.

20. Осокина Д.Н., Бондаренко П.М. Вопросы применения поляризационно-оптического метода в экспериментальной тектонике для моделирования тектонических полей напряжений // Экспериментальная тектоника. Методы, результаты, перспективы. М.: Наука, 1989. С. 78–125.

21. Panteleev I., Plekhov O., Pankov I., Evseev A., Naimark O., Asanov V., 2014. Experimental investigation of the spatio-temporal localization of deformation and damage in sylvinite specimens under uniaxial tension. Engineering Fracture Mechanics 129, 38–44. https://doi.org/10.1016/j.engfracmech.2014.08.004.

22. Rivière J., Lv Z., Johnson P.A., Marone C., 2018. Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults. Earth and Planetary Science Letters 482, 407–413. https://doi.org/10.1016/j.epsl.2017.11.036.

23. Scholz C.H., 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America 58 (1), 399–415.

24. Семинский К.Ж. Структурно-механические свойства глинистых паст как модельного материала в тектонических экспериментах. Иркутск: ИЗК СО АН СССР, 1986. 130 с. ВИНИТИ 13.08.86. № 5762–В86.

25. Семинский К.Ж. Внутренняя структура континентальных разломных зон. Тектонофизический аспект. Новосибирск: Изд-во СО РАН, филиал «Гео», 2003. 243 с.

26. Шерман С.И. Физические закономерности развития разломов земной коры. Новосибирск: Наука. СО, 1977. 102 с.

27. Шерман С.И. Физический эксперимент в тектонике и теория подобия // Геология и геофизика. 1984. Т. 25. № 3. С. 8–18.

28. Шерман С.И. Сейсмический процесс и прогноз землетрясений: тектонофизическая концепция. Новосибирск: Академическое издательство «Гео», 2014. 359 с.

29. Шерман С.И., Борняков С.А., Буддо В.Ю. Области динамического влияния разломов (результаты моделирования). Новосибирск: Наука, 1983. 110 с.

30. Шерман С.И., Семинский К.Ж., Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере. Зоны сдвига. Новосибирск: Наука. СО, 1991. 261 с.

31. Sutton M.A., Orteu J.J., Schreier H.W., 2009. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, New York, 322 p.

32. Tocher D., 1958. Earthquake energy and ground breakage. Bulletin of the Seismological Society of America 48 (2), 147–153.

33. Зубарев Д.Н., Морозов В.Г., Репке Г. Статистическая механика неравновесных процессов. М.: Физматлит, 2002. 431 с.


Review

For citations:


Bornyakov S.A., Panteleev I.A., Cheremnykh A.V., Karimova A.A. Physical modeling experiments to study periodic activation of faults in seismic zones. . 2018;9(3):653-670. (In Russ.) https://doi.org/10.5800/GT-2018-9-3-0366