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ABSTRACT. Like the entire Fennoscandian Shield, Karelia is a low-seismicity region. Fenoscandia displays numerous
geological evidence of the Holocene natural disasters, which followed the last ice sheet degradation. Holocene paleoseis-
mic dislocations have been revealed in some parts of Karelia. However, none of them have been found in southeastern
Karelia - the junction zone between the Fennoscandian Shield and the Russian Plate. The 2023 field studies near Kubovo
village, Pudozh District, Republic of Karelia, have revealed for the first time three local paleoseismic dislocations. The fault
zone in which these study objects are located was previously assumed to be active prior to the Proterozoic. The available
paleoseismic records disprove this assumption and provide evidence on the Holocene activation of these faults. These
studies led to the conclusion that, after the glacial retreat and the removal of the glacial load, the study area experienced
an earthquake of no less than VIII intensity degrees on the MSK-64 scale, which produced local paleoseismodisocations
generating seismotectonic, seismogravitational, and shaking-induced deformations. The radiocarbon date obtained from
the organic layer of the reservoir in the immediate vicinity of the paleoseismodislations suggests that they were formed
no earlier than 11350+230 years ago.
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1. INTRODUCTION

Postglacial tectonics and paleoseismicity of the crys-
talline Fennoscandian Shield have been dealt with in nu-
merous publications [Strelkov, 1973; Mérner, 1981, 1985,
2003, 2004, 2009, 2011, 20134, 2013b, 2017; Morner,
Sjoberg, 2018; Moérner, Sun, 2013; Kuivamaki et al., 1998;
Olesen et al., 2004; Lagerback, Sundh, 2008; Kukkonen
et al,, 2010; Rodkin et al., 2012; Shvarev, Rodkin, 2018;
Nikolaeva et al., 2016a, 2016b, 2018, 2019, 2021, 2023;
Nikolaeva, 2019, 2022; Shvarev, Rodkin, 2017, 2018; Pole-
shchuk, Shvarev, 2018; Gorbatov et al., 2017, 2020; Shvarev
etal, 2018, 2022; Morey et al.,, 2013; Evzerov et al., 2010,
2014; Baranskaya et al., 2019; Gorbatov, Sorokin, 2018;
Kosevich, Romanovskaya, 2014; Shelekhova, Lavrova, 2019;
Shelekhova et al,, 2022, 2023; Zaretskaya et al., 2022].

Paleoseismic dislocations in Karelia were repeatedly
mentioned by A.D. Lukashov [Lukashov, 1976, 1987, 1993,
1994, 1995, 2002, 2004; Lukashov, Belashev, 2002; Zhu-
ravlev et al., 1988] whose studies were conducted to re-
veal more intensive seismic processes that those presently
known and to obtain more evidence for seismic events.

The study of paleoseismicity in Karelia is currently being
continued by many researchers [Zykov, 1997; Avenarius et
al,, 2005; Verzilin, Bobkov, 2009; Marakhanov, Romanenko,
2014; Nikonov, 2007, 2015; Nikonov, Shvarev, 2013, 2015;
Nikonov et al., 2017; Gorbatov et al., 2017; Nikolaeva, 2019;
Shvarev et al., 2022].

Like the entire Fennoscandian Shield, Karelia is a low-
seismicity region with intensities (I) 2-3 MSK-64 [Luka-
shov, 2004]. A higher intensity of seismic processes and
their activation in the Holocene could be due to specific
features of the geodynamic regime of the Fennoscandian
Shield [Lukashov, 2004; Shelekhova, Lavrova, 2019]. Pa-
leoearthquakes in Karelia reached 7-8 on the MSK-64 scale
[Lukashov, 1995, 2004, p. 186].

At the same time, the problems of postglacial tectonics
and paleoseismicity remain insufficiently studied, espe-
cially in our study area. No paleoseismodisocations have
been found there so far. The problem still lies in determin-
ing the age, intensity (I), and magnitude (M) of paleoearth-
quakes.

It should be noted that the last glacier disappeared from
the study area about 14.000 calendar years ago (cal. ya)
[Demidov, Lavrova, 2001; Subetto, 2022, p. 182]. However,
the blocks of dead ice, left behind by the retreating glacier,
took a long time to melt. Therefore, the processes of res-
ervoir development and vegetation colonization therein
were going much slower than those of deglaciation. This
is evidenced by the Vodlozero ice-dividing upland 20 km
north of the area, within an elevated block of the crystal-
line basement, on which the dead ice melting continued till
the Preboreal.

This paper presents the results of the study on local
postglacial rock dislocations and shifts associated with the
occurrence of strong seismic events in the Kubovo area,
Pudozh District, Republic of Karelia.

The aim of the study was to describe paleoseismic events,
to identify the features of dislocations, which can be in-

terpreted as evidence for strong seismic effects, and to
try to estimate the intensity and age of paleoseismic dis-
locations.

Preliminary studies, which undoubtedly need to be con-
tinued, have shown that among the local seismic deforma-
tions there can be distinguished seismotectonic, seismo-
gravitational, and shaking-induced deformations. Among
the seismotectonic deformations, there are normal-fault
scarps, extension fractures, shifts, seismotectonic fractures
with linear zones of rock displacement. Among the seismo-
gravitational deformations there are seismogravitational
rock falls, rock, slides, and slump blocks along the scarps.
Shaking-induced deformations are represented by destruc-
tion zones. Overthrust deformations form directed seismo-
colluvial ejecta.

2.STUDY AREA

The 2023 field studies in the Pudozh District (Kubovo
village) revealed three local paleoseismodisocations in the
junction zone of major neotectonic structures, the Fenno-
scandian Shield and the Russian Plate (Fig. 1).

Moreover, they are located within the so-called Polkanov
marginal flexure, which is the main element of the tectonic
framework of the Fennoscandian Shield junction zone with
the Russian Plate and one of the most active tectonic struc-
tures in Karelia. The geoflexure controls the location of the
Late Cenozoic ice sheet and defines the boundary of the
mega-arch uplift of Fennoscandia of modern and all pre-
vious epochs of glacioisostasy.The modern epoch is asso-
ciated with catastrophic phenomena, such as destructive
earthquakes and flood zones along the coasts of Holland
and Denmark [Sviridenko, 2008]. The position of the ax-
ial zone of the Polkanov large radial flexure is shown in
Fig. 1, a (after [Zykov, Poleshchuk, 2016; Kolodyazhny et
al,, 2020].

Geologically, the study area is a part of the Late Archean
(2680-2670 Ma) Kubovo porphyric granite massif with fis-
sure intrusions (Fig. 1, c). The massif extends NNE 10-60°
for 20-25 km. The western contact of the massif is not ex-
posed. Its eastern contact with host tonalites and migma-
tite-plagiogranites was studied in a series of bedrock ex-
posures to the east of the study area and to the south of
Vodla village. Porphyric granites display a persistent ap-
pearance, a massive texture and a pink to greyish-pink
color with dark-smoky quartz zones. The granites are me-
dium-grained (3-5 mm), with porphyraceous K-feldspar
grains measuring 1.0-1.5 cm [Kostin, 1989].

The Late Archean crystalline basement is almost every-
where overlain by a loose layer of the Quaternary glacial
deposits. The sedimentary cover is dominated by the Last
Glaciation moraine consisting of heavy brownish to dark-
grey sandy loam, loam and sometimes clay. The average
moraine thickness varies from 25-30 to 100 m. Crystal-
line rocks are exposed locally in the Vodla River valley and
less frequently visible on the flat glacial plain, where the
there is a thinner (5-15 m) layer of moraine. The loose sedi-
ments at Kubovo site, are irregularly distributed, filling de-
pressions (irregularities) in the peneplanated crystalline

https://www.gt-crust.ru


https://www.gt-crust.ru

Shelekhova TS. et al.: New Data on Postglacial Seismic Dislocations... Geodynamics & Tectonophysics 2025 Volume 16 Issue 4

Newest tectonic faults (b)

37°28'E

Zones of fine block
crushing of rocks 0 o

il
|

of tectonic movements
I relatively intensive uplits
\é(/ 3
[IT] moderate uplits S i
[ weak uplifts g
&
=] relative declines L
&
Zones with different directions 0&‘
3 of movement
I [_] submerged zones

1 I:I differentiated alternating
movements

K ‘ [ strong uplifts

D

Zones with different intensity \,Z"\‘\v\/

[ Boundaries of the main Su
HHHHHHWUM“““‘ neotectonic structures QoRW INENS

Ase

h
s *
/
4, Lake
R Oneg‘g

RUSSIA

|
i
IS

FINLAND

N .80 oC9

61° 57"

LG ol9

Phanerozoic (<0.54)
'§ Carbon (0.36-0.30)| 1 Sandstones, clays, dolomites, limestones
o
S -
E (8%(_’3'%%) Sandstones, conglomerates, clays
Proterozoic (2.50-0.54)
&0
a Vendian 3 Sandstones, clays, siltstones, mudstones, tuffites,
3 (0.64-0.54) conglomerates
ze
4 Red and grey quartzite sandstones, conglomerates,
Vepsian mudstones
Q _
g (1.80-1.65) 4y | Gabbrodolerites, dolerites
g Lyudikovian 5 Basalts, pictites, andesibasalts, gabbrodolerites,
g_ (2.10-1.92) shungites, sandstones, shales, conglomerates, dolomites
o " .
@ . - Quartzite sandstones, quartzites, conglomerates,
E Yatulian (2.3-2.1) |6 dolomites, salts, basalts, gabbrodolerl%es
Sariolian + Sumian 7 Layered intrusives (2.51-2.40), peridotites, pyroxenites,
(2.5-2.3) Al norites, gabbro, diorites
Archean (3.8-2.5)
s (2.7-2.6) Granodiorites, granites (2.69-2.67)
K9]
82
= (2.8-2.7) Granulites
Lake Onego
S Metasediments, volcanites Skomatiites, basalts,
1} (3.0-2.8) andesites, dacites, rhyolites) (2.88-2.83 and 2.99-2.92)
l § and partly intrusives of peridotites and gabbroids
@©
o
4 3 (3.2-2.8) 11py | The oldest TTG and amphibolites (3.3-2.9)
=

Fig. 1. The location of the studied objects on neotectonic (a), topographic (b) and geological (c) maps [Atlas..., 2021].

The study area is marked by a star on the neotectonic map; local paleoseismodisocations are indicated by numbers 1, 2, 3 on the
topographic map; a reservoir is shown with a circle with the radiocarbon date (**C years ago) of the beginning of the process of the
organic layer accumulation; on the geological map, the study area is indicated by a pink rectangle.
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basement. Rhythmically layered clayey-silty deposits occur
along the Vodla River. The river valley is filled with alluvi-
um, which consists in the rapids of boulders and pebbles
with a small amount of well-washed inequigranular sand
infill. The flood plain terraces are partly made up of 1-2 m
thick sand and silt strata. The revealed topographic changes
are confined to bedrock exposures along the fault scarps.
The traces of paleoseismic dislocations were studied at lo-
cal sites marked by stars numbered 1, 2, 3 in Fig. 1, b.

3. MATERIALS AND METHODS

Paleoseismogeological methods were used to determine
pleistoseist zones. The term "paleoseismic deformations”
[Nikonov, 1995] was used to designate the combination of
seismic effects on the relief, including seismotectonic, seis-
mogravitational and gravitational-seismotectonic disloca-
tions [Solonenko, 1972, 1973], as well as shaking-induced,
seismohydrodynamic, seismodynamic, and reverse faulting
(thrust) deformations [Nikonov, 1995]. The list of seismic
deformations of the Kubovo massif includes seismic rup-
tures with the linear fracture zones in rocks (seismotectonic
type), seismic collapses (seismogravitational type), areal
fracture zones (shaking-induced deformations) and earth-
quake-related colluvial wedges (thrust deformations).

An estimation of the true spatial parameters of paleo-
seismodisocations was performed using a program for sat-
ellite image processing and spatial analysis, which includes
a free and open source geographic information system
Quantum GIS (QGIS 3.42).

Fig. 2 shows the location, boundaries, and areas of the
study objects.

The latest lineaments were described by analyzing re-
mote data (space and aerial photographs, as well as large-
scale topographic maps). Geological-structural studies
included on-site observation, assessment of bedrock de-
formations, and analysis of massif fracturing. Nowadays,
the estimation of quantitative parameters of faults, as well
as age determination for dislocations, are performed during
trenching study [McCalpin, 2009]. However, this method
cannot be fully utilized to study dislocations at these sites,
because their cover is either softly thin or absent.

Another method is sampling lake bottom sediments in
the vicinity of paleoseismic dislocations. The disturbed sedi-
ments are revealed and dated by radiocarbon analysis. The
assessment of general paleogeographic conditions of the
study area can be made using micropaleontological methods
(pollen and spore and diatom analyses). Unfortunately,
there is no suitable body of water near the paleoseismic
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dislocation. However, we took samples from a small lake
(a blue circle in Fig. 1, b) located 16 km northwest of the
study area.

The radiocarbon age date (Table 1), obtained from the
contact zone of mineragenetic and organic deposits in the
lake, is indicative of their accumulation in the first half of
the Preboreal.

The deposits were dated in the Laboratory of Geomor-
phological and Paleogeographic Studies of Polar regions
and the World Ocean, SPbU. using standard methods [Ar-
slanov, 1987].

Earthquake intensity (I) was estimated by the paleo-
seismogeological method for local bedrock disturbances
in Fennoscandia [Rodkin et al,, 2012] in comparison with
the existing paleoseismic dislocation intensity scales [Med-
vedev et al., 1975; Solonenko, 1977; Michetti et al., 2004;
McCalpin, 2009; Nikolaeva, 2019].

4. RESULTS

In the context of structural geology, the study area is lo-
cated in the contact zone of major neotectonic structures:
the Fennoscandian Shield and the Russian Plate. It was
considered active until the Proterozoic [Lukashov, 1995].
As noted in [Rodkin et al., 2012], the considerably dis-
sected relief of Karelia is predetermined by recent block
movements, in particular, the rejuvenation of active faults
or of their parts in the Late Glacial and Holocene periods.
As it turned out, the territory within which the studied pa-
leoseismodislocation is located also experienced tectonic
activation presumably at that time.

A map of fractured rocks of Karelia (Fig. 3) shows that
the northwestern (300-340°) and northeastern (20-40-
60°) lineament trends are predominant therein [Lukashov,
2004].

The study area is located in the South Karelian struc-
tural zone, which has a sublatitudinal strike as a whole
[Lukashov, 1987, 1995; Shelekhova, Lavrova, 2019, p. 191].
The structural element of this zone is a deep tectonic de-
pression with signs of neotectonic movements, buried en-
tirely beneath the Quaternary deposits. The bottom of the
depression lies 80 m below the sea level. Its Quaternary
cover is 150 m thick [Ekman, 1987].

However, the structural relief pattern of the paleoseis-
modislocation, both in Karelia and in this structural zone,
shows mainly two directions: northwest and transverse,
northeast. The results of interpretation of aerial and sat-
ellite images, as well as of ground survey, show that the
predominant strikes of active lineaments - scarps, large
hollows, ditches and gorges - are 290°; 330-340-345°;

N-S: 0-180° - submeridional; 60-70°. At the same time,
the above-mentioned northwest and northeast directions
are characteristic of the scarps. Gorges and hollows are
more often elongated submeridonally.

The analysis of microfractured massifs in sites 1, 2 (see
Fig. 2, b, c) allowed us to identify three main fracture sys-
tems with the strike azimuths: 1) 60-70°, 2) 320-340-
345°,3) 290°. These directions are in good agreement with
the strikes of neolineaments (Fig. 3), and their associated
seismic dislocations confirm their seismic activation in the
Holocene.

The strikes of active faults, consistent with the fracture
strikes of the scarps and gorges, are also responsible for
their seismic activity in the Holocene. The postglacial ori-
gin of this disastrous event is indicated by the smoothed
primary surface of the crystalline basement showing dis-
tinct patterns of seismic activity, e.g. the abundance of dis-
sected, displaced, scattered and shifted blocks and seismo-
gravitational falls.

As already noted, there were found three areas of oc-
currence paleoseismic events.

The main, most representative paleoseismic disloca-
tion (see Fig. 1, b, Fig. 2, b, claster 1) is located north of
the Berezovy Island at an absolute altitude of about 60 m
(61°57'42.39" N; 37°13'04" E). The fault scarp (strike azi-
muth NE 60°; H=20 m), extending for more than 50 m, is in
the contact zone of heterochronous granitoids: the 2680-
2670 Ma Kubovo massif and the Archean undissected to-
nalites, trondhjemites and granodiorites 3000-2750 Ma
old (see Fig. 1, c). On the top of the scarp, there are piles
of crushed rocks. These are separate blocks (20, 60 and
75 cm) moved from their original location and 5-25 cm
wide open fractures, not filled by moraine deposits, which
indicates their postglacial origin. Splits shaped like gaping
joint-fissures disturbe glacial polishing and striation. The
fractures occur in different configurations, sometimes non-
linear or tortuous, and have width 5-70 cm or more (in
swells) and depth more than 4 m. Separate blocks, detached
from the rock mass and displaced from 20 to 50 cm along
the subhorizontal to slighly inclined surface, are present
throughout the site. The displaced blocks vary in shape
and size, but they all display fresh faces and edges. It looks
that some of the blocks were detached from the basement
rocks (Fig. 4, 5).

The measured directions of the block displacements al-
lowed us to identify the main trends in displacement ob-
served in the northwestern (320-340°) and northeastern
(60°) directions. The scarp slope is steep and bears fresh
traces of block detachment. The rockfall blocks were formed

Table 1. Results of radiocarbon dating (**C) of sediments from the lake in the area of Kubovo village

Lab. number Depth,cm  Sample material

14C age tlo

Calibrated age*, cal yr BP

Mean calendar age +1c0 (89.8 % probability)*

LU-11431 525-518 canpornesb

9860+130

11350+230 11820-11060

Note. * - the calendar age values are based on the calibration program "OxCal 4.4.4" (calibration curve "IntCal 20", "BOMB 21 NH1"); Christopher Bronk

Ramsey (https://cl4.arch.ox.ac.uk).
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at the scarp base. Huge rocks, displaced and separated from
the main basement, are exposed in the scarp (see Fig. 4;
Fig. 5).

Besides, abundant niches, wells and cavities more than
50 cm in width, as well as extension fractures, occur on the
steps and on the top of the scarp (see Fig. 4; Fig. 5). Rock
fractures and extension faults, showing various trends (NE
70° NW 320-330-345-350-355; N-S; SE 70°), were mea-
sured in different segments of paleoseismic dislocation. The
morphology of the fractures, as well as their inconsistency
with the main strike of the rocks (NNE 10-60°), the direc-
tion of ice movement and the freshness of the scarp walls
suggest that the fractures were formed after the glacial

retreat. According to the obtained dating (Table 1), this
could have occurred in the Holocene no earlier than 11350
4230 cal. ya.

The signs of paleoseismic activity on the right bank of
the Vodla River were found at an absolute altitude of about
50 m: 61°56'06.08" N; 37°08'17.26" E (marked by a star
No. 2 in Fig. 1, b; cluster 2 in Fig. 2, b; Fig. 6).

The ruptures therein are trending SE 110°. The polished
crystalline rock exposures with glacial scars were origi-
nally reworked by a glacier, which confirms the postglacial
origin of the ruptures. The extensional fault, up to 1.5 m
in width, forming a niche, is especially noteworthy (Fig. 6,
a), The extensional fault edges are sharp and rectangular,

[m]
Z
<C
3
Z
T

Fig. 3. Map-scheme of systems of fractures (lineaments) of the Karelian crystalline basement (supplemented after [Lukashov, 1976]).

The study area is marked by a star.

https://www.gt-crust.ru
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Fig. 4. General view (a) and tectonic faults (b-d) on the paleoseismodislocation.

(a) - paleoseismodislocation (star No. 1 in Fig. 1, b). The arrow shows the main direction of the escarpment; (b) - blocks detached from
the rock mass and displaced by 20-50 cm; (¢) - huge blocks of rock, detached and removed from the main basement (tensile fractures);
(d) - numerous niches, wells and cavities up to a width of 50 cm or more.

https://www.gt-crust.ru 7
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Fig. 5. Different types of tectonic faults on the paleoseismodislocation marked by the star No. 1 in Fig. 1, b. (a) - crushed basement
rocks; (b, ¢) - blocks detached from the basement rocks; (d) - ruptured and displaced blocks.

https://www.gt-crust.ru 8
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with no traces of glacial reworking, which clearly indicates
its postglacial formation. The niche is overthrust by a big
block, 3x4 m in size (Fig. 6, a).

The block surface is polished subdued (reworked by
the glacier), but its basement has sharp straight edges. 20-

30 cm wide ruptures in crystalline rocks occur behind the
"cave" (61°55'55.79" N; 37°08'04.73" E) (Fig. 6, b, c).

Also noteworthy are the ruptures in the crystalline rocks
near the Padun Waterfall (61°56'04.98" N; 37°08'17.22" E;
see Fig. 1, B (3), Fig. 2, d (claster 3); Fig. 7, a-d). The apparent

Fig. 6. Tectonic disturbances on the right bank of the Vodla River (paleoseisodislocation marked by the star No. 2 in Fig. 1, b, and k2 in

Fig. 2, a, c).

(a) - an extensional fault in the crystalline basement rocks that forms a niche; (6, 8) - long faults on the right bank of the river (hammer

length 58 cm). The visible length of the faults is 10-15 m.

https://www.gt-crust.ru
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Fig. 7. Tectonic faults near the Padun Waterfall (shown by the asterisk No. 3 in Fig. 1, b, and k3 in Fig. 2, a, d).

(a) - Padun Waterfall in the satellite image. The yellow dotted lines show the faults; the blue lines show the points where photos (b-d)
were taken; (b, ¢) - a fragment of a long fault near the Padun Waterfall; an apparent depth is more than 2 m; (d) - crushed part of the
rocks; (e, f) - fractures (faults) on cluster 1.

https://www.gt-crust.ru 10
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length of the ruptures is approximately 100 m; in some
places, they are 40 cm wide.

5. DISCUSSION
Itis believed that "earthquake dislocations include such
phenomena bedrock disturbances with a considerable dis-
placement of its constituent parts, fracturing, rock breaking,
block movement along slightly inclined or subhorizontal
surfaces, block detachments and block turnings, as well as
rockfalls" [Nikolaeva, 2019, p. 446].

Paleoseismic dislocations are indicated by the presence
of open fractures. Such fractures have been revealed at all
the sites studied. At the same time, the observed displace-
ment of the blocks falls largely within the fracture opening,
which does not relate their formation to frost weathering
(see Fig. 4, ¢, Fig. 6, B, c; Fig. 7, B-f).

At paleoseismodislocation 1, the dynamic effect on the
basement rocks is indicated by the position of a detached
rock block on the fractured top surface at the very edge of
the fault (Fig. 8, a); detachment of big blocks from the rock

Fig. 8. The photo was taken at the paleoseismodislocation marked by the star No. 1 in Fig. 1, b.
(a) - ablock of rock on the fractured top surface at the very edge of the fault, the apparent depth of the fracture is more than 2 m; (b) -
a detached block of rock that has slid down the slope; (c) - a scarp with a height of >10 m; (d) - a detached and removed block.
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base (Fig. 8, b); phenomena of detaching blocks from the
the rock base and their displacement along the slope (see
Fig. 5, b, c), formation of the scarp with a height of more
than 10 m (Fig. 8, c); detachment and removal of the block
from the rock base (Fig. 8, d).

The results of studies of seismodeformations in seismi-
cally active zones indicate that the well-pronounced seis-
modeformations occur during earthquakes with a mag-
nitude (M) of 6.0-6.5 or higher (after [Lukashov, 2004]).
According to experts [Nikolaeva, 2019], depending on the
fracturing degree of the rock massif, such seismic disloca-
tions could be formed as a result of seismic events of /=
=VII-IX. According to the classification presented in INQUA
Scale, the bedrock fractures tens of meters in length and
tens of centimeters to a few meters in width are caused
by earthquakes with a shaking intensity of at least [X-X
[Michetti et al., 2004].

Fracturing and rockfalls on steep slopes may be caused
by seismic shaking with an intensity of at least VI [Med-
vedev et al,, 1975]. Fractures (see Fig. 7, b-f) and rockfalls
(see Fig. 5) are clear signs of a sufficiently high intensity of
seismic events (=VIII).

The validity of these estimates requires assessment and
further investigation.

We assume that the dislocations discussed herein were
caused by a one-time event, which took place after the
glacial retreat and the removal of glacial load. This is sup-
ported by evidence found for tectonic disturbances: frac-
tures not filled with glacial material, fracturing of the crys-
talline basement, rockfalls with sharp and fresh edges of
the blocks, disruption wall, block displacements etc.

The radiocarbon dating of the organogenic nearby-lake
sediments indicates their accumulation in the first half of
the Preboreal 11350+230 cal. ya. This suggests that the
earthquake could occur no earlier than the retreat of the
glacier from this area (13200-14200 cal. ya). During the ac-
cumulation of organogenic sediments in the studied lake,
the edge of the glacier was already located in western
Karelia, where the Salpausselkd ice-marginal formations
(ca. 10200 BP) had been deposited [Ekman, Iljin, 1995] at
a distance of more than 1500 km from the study area. In
spite of the fact that the preliminary study of the lake sedi-
ment core sequences showed no visible disturbances in
the stratigraphy, further micropaleontological (pollen and
spore and diatom analyses) and other studies of marshy
areas near local paleoseismodislocations may either sup-
port or disprove our assumption. Unfortunately, we have
so far not been able to detect any soil filling numerous
fractures and use it for dating. Most of the fractures are
either unfilled or overgrown with mosses and lichens. Per-
haps, a more thorough study will yield traces of fracture
filling with loose sediments, and it will be possible to ob-
tain more accurate dates of fracture opening.

A.D. Lukashov [Lukashov, 2004] believed that the ear-
liest paleoseismic dislocations in Karelia occurred 9800-
9500 BP. The paleoearthquake and the formation of the
"Kubovo" paleoseismic dislocation in Karelia in Karelia
could occur earlier than previously assumed.

6. CONCLUSIONS

Thus, the study of local topographic disturbances and
their distinctive features, as well as the analysis of the geo-
logical-structural plan and the lineament network, show
the signs of the late glacial and postglacial tectonic and
seismic activation in the study area. Young faults at paleo-
seismic dislocation sites occur in the oldest-known Late Ar-
chean crystalline basement rocks (dated at 2680-2670 Ma)
of the Fennoscandian Shield-Russian Plate contact zone.
Based on the data obtained, it can be concluded that af-
ter the glacial retreat and the removal of glacial load in the
postglacial time (no earlier than 12000 cal. ya) the study
area experienced an earthquake with a seismic intensity
of at least VIII on the MSK-64 scale. The age date obtained
for the organic deposit in the nearby water body suggests
that it could be the earliest Holocene paleoseismic event in
Karelia and that the paleoseismic dislocation could be no
older than 11350+230 cal. yr.

Further studies in this region are needed to more accu-
rately estimate the intensity and age of paleoearthquakes
and to correct a map of paleoseismic processes in Karelia.
More detailed studies will reveal other types of tectonic
disturbances besides those described in this article. Despite
a weak seismic activity in Karelia, there is no doubt that
such studies are necessary to obtain reliable data on a pos-
sible manifestation of seismic activity in the region.
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