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ABSTRACT. The synthesis and analysis of new geological and geophysical data through the Black Sea-Balkan-
Anatolian-Caspian megaregion been appeared during the last two decades have been carried out. All collected materials
make it possible to give a completely different interpretation of long-known facts and to provide a new-level considera-
tion of the onset time and mechanism of the Greater Caucasus uplift, as well as genetic type and filling mechanism of the
Ciscaucasia troughs. It has shown that the Greater Caucasus orogen became a high and an intensively eroded mountain
structure not earlier than the Pliocene. Its formation was not due to the Oligocene (or earlier) initiation of long-term
tectonic near-meridional crustal shortening and slow gradual uplift, but occurred as a rapid uplift of the crustal block in
the Pliocene - Quaternary in response to the delamination of a fragment of the lithosphere beneath the central part of the
Caucasus region. The modern geomorphological appearance of the Greater Caucasus orogen was greatly contributed to
by the deformations originated from large-amplitude right-lateral strike-slip movements with additional transpression
along the regional Crimea-Caucasus-Kopetdagh fault zone, as well as from the gravitational collapse of the orogen. Most
of the Cenozoic sediments, filling the Ciscaucasia troughs, have accumulated in the basin located in the northeastern
part of the Eastern Paratethys. Until the Pliocene this basin was a pericratonic sedimentary basin on the southern shelf
of Northern Eurasia, which experienced the accumulation of sediment transported primarily from the ancient East
European and young epi-Hercynian Scythian platforms. The sedimentary basin, with relics as the Ciscaucasia troughs
in the present-day structure of Ciscaucasia, was separated from the Eastern Paratethys by the rapidly uplifting Greater
Caucasus orogen at the very end of the Pliocene - Quaternary and transformed into a piedmont trough wherein the sedi-
ment from the GC started to accumulate.
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1. INTRODUCTION

Among the sedimentary basins located in the peripheral
parts of the continental massifs, structurally atributed to
by the platforms, there could be distinguished piedmont
troughs (also termed as foredeeps or forelands) and peri-
cratonic troughs. It was already mentioned in [Arkhangelsky,
Shatsky, 1933, p. 141] that the piedmont troughs "are the
areas of accumulation of new thick sediments transported
from the adjacent uplifted parts of the folded system".
On this basis, the Ciscaucasia trough system was inter-
preted as a system of piedmont troughs [Arkhangelsky,
1927], paragenetically connected with the Greater Caucasus
(GC) and predominantly filled by the erosion products
from the GC constituting complexes. Thus the interpre-
tation of the Ciscaucasia troughs-fill history and their ge-
netic belonging (tectonic nature) generally go back to the
first quarter of the XX century, i.e. started to form almost
100 years ago.

The opinion that the Ciscaucasia troughs are piedmont
basins (and, likewise, foredeeps or forelands) still domi-
nates among the scientists exploring different branches
of the Earth science, including tectonists and petroleum
geologists. This opinion forms the basis of tectonic [Mila-
novsky, Khain, 1963; Sharafudinov, 2003; Nikishin et al,,
2010; Popkov, 2010] and paleogeographic [Popov et al.,
2009; Beluzhenko, 2011; Popov, Patina, 2023] concepts,
as well as of strategies for hydrocarbon exploration survey
and numerical modeling of the evolution of generation-ac-
cumulation hydrocarbon systems of the North Caucasus
region and Ciscaucasia [Afanasenkov et al., 2007; Kerimov
etal, 2021].

In their landmark study, [Milanovsky, Khain, 1963, p. 287]
found that from as early as the Oligocene "the Caucasus
enters its final stage <...> of development - the stage of for-
mation of large folded-block uplifts (meganticlinoriums)
and their associated piedmont and intermountain troughs".
The next paragraph states the following: "During the Oligo-
cene, the Greater Caucasus becomes an orographic uplift,
growing in height and breadth and starting to transport
sandy-clay material to its bordering depressions" [Mila-
novsky, Khain, 1963, p. 287]. In [Popkov, 2010, p. 25] it is
written: "The West Kuban piedmont trough, north of the
folded orogenic structures of the West Caucasus, was ini-
tiating in the Oligocene on the subsiding southern part of
the Scythian Plate". Similar ideas have been proposed by
A.M. Nikishin and his followers.

V.V. Belousov considered the initial formation age of the
GC somewhat younger. He believed that "at the boundary
between the Maikop and Chokrak deposits’ <...> at the
place of the former Caucasus basin there occurs an area of
intensive upward surface motions which exactly began to
initiate the Caucasus Mountain Range in the modern sense
of the word" [Belousov, 1940, p. 67].

A still earlier beginning of the orogeny in its current
form and related beginning of the Ciscaucasia trough for-
mation are reported in [Timoshkina et al., 2010] and in
[Klavdieva, 2007] - a candidate’s dissertation prepared un-
der the guidance of N.V. Koronovsky. In the former publica-
tion, using mathematical modeling of the Ciscaucasia evolu-
tion, the authors concluded that the GC newest and present
day orogen has three stages. These three stages were related
with the Tarkhanian, Konka-Early Sarmatian and Pontian
regional compression which occurred 16.6-15.8, 14.3-12.3
and 7.0-5.2 Ma ago, respectively [Timoshkina et al., 2010].
In [Klavdieva, 2007], using a similar approach, it was shown
that the beginning of a rapid uplift of the GC falls within the
Late Sarmatian (about 10 Ma).

In recent years, some of the scientists have once again
focused on the Ciscaucasia trough-fill mechanism and his-
tory [Kuznetsov etal.,, 2023, 2024a, 2024b; Kolodyazhny et
al., 2024a, 2024b, 2024c; Postnikova et al., 2024; Dantsova
etal., 2024; Patina et al., 20244, 2024b]. That is, a question
of tectonic nature of the Ciscaucasia troughs, which seemed
to been solved one hundred year ago by founders of the
Russian geological science, is back on the agenda.

The onset time of the GC uplift, or the orogen-scale
uplift history in the Crimea-Caucasus area in a larger con-
text, including also the Crimean Mountains and Lesser
Caucasus, has been under geological discussion since the
late XIX - early XX centuries when the geosynclinal con-
cepts had dominated. According to those concepts, the
Caucasus region was experienced multiple alternations of
subsidence and uplift processes during the Late Precam-
brian and Phanerozoic orogeny. The most recent uplift of
the Caucasus and formation of its appearance, similar to
that of the present-day, was presumably firstly shown by
N.I. Andrusov on the paleogeographic maps he drew for
the Early Miocene [Andrusov, 1896]. Well-known still are
A.D. Arkhangelsky’s [Arkhangelsky, 1923; and others] ideas
that the GC orogen and formation of its adjacent Ciscaucasia
piedmont trough, filled with the mountain erosion prod-
ucts, started as early as in the Oligocene. These ideas found
their reflection in classical works [Arkhangelsky, Shatsky,
1933; Arkhangelsky et al., 1937; Arkhangelsky, 1941; Mi-
lanovsky, Khain, 1963; Muratov, 1967; Milanovsky, 1968;
and many others].

However, even prior to the Great Patriotic War, Corr.
Memb. AS ArSSR L.A. Vardanyants (a researcher of the
Seismological Institute AS USSR, and then of the VSEGEI)
wrote that the mountainous relief of the GC formed only
in the most recent geological past. In particular, in his
monograph [Vardanyants, 1948, p. 31], referring to his pre-
war studies and publications [Vardanyants, 1933a, 1933b],
L.A. Vardanyants wrote: "Uplifting of the Caucasus and
its relief dissection, i.e. formation of the present-day ap-
pearance of these high mountains, began as early as the

! Maikop - the Maikop Formation, in the present state of knowledge, stratigraphically covers the Rupelian and the Chattian stages of the Oligocene,
as well as the and the Aquitatian and the Burdigalian stages of the Lower Miocene, and has an age of ~34-16 Ma; the Chokrak Formation covers the
Chokrakian Regional Stage of the Eastern Paratethys (Langhinian Stage of the International Chronostratigraphic Chart and General Stratigraphic Scale

of Russia) and has an age of ~15.5-14.0 Ma.

https://www.gt-crust.ru
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Apsheronian but was most rapid only in the post-Pliocene
and generally stopped by the beginning of the Khvalynian"2.
But L.A. Vardanyants’ ideas were not supported by the geo-
logical community of that time, so that there is still wide
acceptance of Academician A.D. Arkhangelsky’s earlier be-
lief system [Arkhangelsky, 1923, 1927, 1941; and others]
relating the beginning of the present-day GC orogenic up-
lift to the Paleogene or even earlier period. This belief sys-
tem is most fully described in [Milanovsky, Khain, 1963].
Those ideas have been transformed from the fixist tec-
tonic terminology of that time into modern mobilist terms.
Withal the essential understanding of the geological prob-
lems of the Caucasus region has undergone only insignifi-
cant (cosmetic) changes and is found dominantly in the
geological literature of Russia and in the most part of those
published abroad.

According to these views, the GC is considered as a com-
pressional structure resulted from the Arabia-Eurasia col-
lision [Vincent et al.,, 2007; Mumladze et al,, 2015; Ismail-
Zadeh et al., 2020; Mossar et al., 2022; Vasey et al., 2020,

Tkach, 2023].

https://www.gt-crust.ru

2023; and references therein]. These publications state
that the GC is the Alpine collisional orogen, which emerged
as an individual structure at the site of the former Jurassic-
Paleogene deep-water rift trough. The major mechanism
for the GC orogenic uplift is thought to be related to tec-

tonic shortening of the crust across the GC under a regional
near-meridional compression regime which caused the
deformations and crustal thickening [Ershov et al., 1999;
Afanasenkov et al,, 2007; Timoshkina et al., 2010; Nikishin
etal, 2010; Vasey et al,, 2020, 2023; and references there-
in]. The western segment of the GC in Fig. 1 exemplifies a
conceptual scheme of the GC formation, the views on its
key formation time limits and formation mechanism.
However, even with a large volume of geological, geo-
morphological, seismic and other data now available [Leo-
nov, 2007; Kopp, Kurdin, 1980; Kopp, 1997; Dotduev, 1986;
Rastsvetaev, 1989; Bazhenov, Burtman, 1987; Leonov et al.,
2001; State Geological Map...., 2000, 2002; Popkov, 2006;
Panov, Lomize, 2007; Kamzolkin et al., 2018; Somin et al.,

2013; Rogozhin et al., 2015; Pavlenkova et al.,, 2022; Cowgill

*The modern view is that the lower Apsheronian time limit is about 2 Ma [Tesakov, 2021], and the Khavynian time range is 46.0-12.5 Ka [Makshaev,
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et al.,, 2016; Gamkrelidze et al., 2020; Vasey et al., 2020,
2023; Vincent et al.,, 2005, 2007, 2011, 2013, 2014, 2020;
and references therein], there is still no consensus re-
garding the understanding of nuances of the complex in-
ternal structure of the GC mountains, just as there is no
acknowledged meaningful interpretation of structural dif-
ferences and formation history of their different parts (see
Sections 3 and 6 below).

The question of the onset time uplift and formation
mechanism of the GC is directly related to understanding
the genetic nature of the Ciscaucasia troughs and troughs-
fill mechanisms. In the middle 1920s, A.D. Arkhangelsky
identified for the first time the Cenozoic trough, occupying
the western part of the northern Ciscaucasia, a larger part
of the Sea of Azov and Steppe Crimea, and named this
trough - CisBlackSea trough [Arkhangelsky, 1923]. After a

(@)

third of a century, M.V. Muratov named it the Indol-Kuban
trough - after the names of the Indol River in the Crimea
and the Kuban River in the GC and in the west of the Cis-
caucasia [Muratov, 1955], - which has become more popu-
lar nowadays. This trough and/or some of its parts are also
mentioned in literature as Azov-Kuban, Kuban, West and
East Kuban, West Caucasian and under other names. Both
A.D. Arkhangelsky and M.V. Muratov considered the Indol-
Kuban trough and some of its structural elements - the
Kuban trough in particular - as a piedmont trough, filled
predominantly with the sediments eroded from the Crimea-
Caucasus orogen. Until recently, these traditional views
were dominant. Thus, according to the paleogeographic
reconstructions [Popov, Patina, 2023] the Early Oligocene
and Early Miocene low-mountain insular area (an island
chain) - a source of fine-grained clastic material - was
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Fig. 2. Paleogeographic schemes of Western Eurasia (after [Popov, Patina, 2023]).

1 - mountains; 2 - uplands; 3 - lowland; 4 - lagoons and lakes; 5 - shoal; 6 - deep-water shelf; 7 - basins; 8 - bathyal; 9 - volcanic
massifs; 10 - gypsums; 11 - basin slopes; 12 - volcanos; 13 - river deltas; 14 - land-sea coastal border; 15 - normal faults; 16 - thrusts:
active within a specified period (red-colored) and at a later time (black-colored); 17 - strike-slips active within a specified period and
at a later time. WBS - West Black Sea basin, EBS - East Black Sea basin, LS - Lesser Caucasus.
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situated where the GC orogen now resides (Fig. 2, a, b).
The Oligocene - Lower Miocene Maikop Formation in the
Indol-Kuban trough is interpreted as a lower (thin) mo-
lasse, which consists of the sediments eroded from the
western segment of the GC orogen at its initial uplift stages
[Milanovsky, Khain, 1963; Muratov, 1967; Milanovsky, 1968;
Kholodov, Nedumov, 1981; and others]. One of the grounds
for the reconstruction of the uplift, already existed in the
Oligocene on the future site of the GC orogen (its western
segment in particular), is the lack of the strata younger
than the Oligocene therein. Nevertheless, there probably
were such strata on the future site of the western seg-
ment of the GC; they could just fall within the erosion-
prone area and be completely eroded during the later oro-
genic uplift.

There is a widespread perception that the GC has been
a vast and intensely eroded land area since the Middle
Miocene [Andrusov, 1896; Zhizhchenko, 1940; Milanovsky,
Khain, 1963; Milanovsky, 1968]. This perception was also
reflected in the latest publications [Popov, Patina, 2023]
(Fig. 2, ¢, d). The post-Oligocene strata in the Indol-Kuban
trough and on the northern slope of the western segment
of the GC are considered as a molasse - a mark of at least
some of high-land areas in the western segment of the GC
orogen contributing most of the erosion material to these
strata [Milanovsky, Khain, 1963; Muratov, 1967; Milanovsky,
1968]. The well-known Late Oligocene and post-Oligocene
randomly structured (olistosrome) coarse-grained clastic
complexes in the Ciscaucasia and on the northern slope of
the western segment of the GC [Charnotsky, Gubkin, 1910;
Gubkin, 1912, 1913] are often considered to be a sign of
existence of high-mountain relief in the GC area since the
Late Oligocene. However, the available geology publica-
tions do not provide any description or age substantiation
of the randomly structured (olistostrome) coarse-grained
clastic complexes. The exception is [Marinin et al., 2011],
which describes olistostromes in the Eocene(?) substan-
tially clayey stratum on the northern slope of the north-
western segment of the GC. Based on the data presented in
their paper, the authors concluded that the occurrence of
orogenic movements in the study area, including fold- and
fault-related deformations, gave rise to tectonic erosion
with formation of olistoliths and large olistoplaques piled
up in the Eocene clayey cross-section.

Ciscaucasia and the Middle Caspian are an oil-bear-
ing regions, whose most important oil-source complexes
rightfully include the Maikop Formation since the earliest
publications of .M. Gubkin [Gubkin, 1912, 1913]. For more
than 110 years passed since that time, the views on the
properties of oil-source rocks of the Maikop formation
have been fully justified. Over the past two decades, deep
boreholes have been drilled in Ciscaucasia and the Middle
Caspian; the geochemical and pyrolytic data have been
accumulated on the properties of oil-source rocks and on
the degree of their transformation, high-resolution seis-
mic studies have been conducted, etc. This has yielded
high-resolution data on seismic stratigraphy for the en-
tire region.

In parallel, the practice of geological research has been
expanded by the introduction of new technologies, such
as:

(1) seismic tomography identifying local structural de-
tails of the Earth’ crust and upper mantle;

(2) U-Pb zircon dating of the magmatic bodies which
allows estimating their age with an accuracy of 1-2 Ma and
even higher and sometimes reconstructing the multi-stage
history of initiation of high-grade magmatic and metamor-
phic complexes;

(3) low-temperature thermochronometry including fis-
sion track and other methods providing the information
on the time uplift history of the area;

(4) U-Pb dating of single detrital zircon grains from clas-
tic sediments yielding information on the primary source
areas of detrital material transported to the basin which
allows to reconstruct the sediment flow directions.

The recently obtained geological-geophysical data on
the Black Sea-Balkan-Anatolian-Caspian megaregion have
provided new ways of looking at the onset time and mecha-
nism of the GC orogen uplift, genetic type of the Ciscaucasia
troughs and Ciscaucasia trough-fill history, as well as an op-
portunity to propose a new interpretation of well-known
facts. The main objective, as well as the main content of this
paper, is to syntheze new data on the Black Sea-Balkan-
Anatolian-Caspian megaregion with an emphasis on the
West Caucasus and western Ciscaucasia (Kuban trough),
to analyze data coherency and accordingly:

(1) to show that the opinion of L.A. Vardanyants, who
assigned the initiation of the GC as a high-mountain region
to the period not earlier than the Quaternary, has been con-
firmed by new factual and up-to-date materials;

(2) to give reasons for the fact that a rapid uplift of the
GC is an isostatic response to the Pliocene delamination
of the lithospheric fragment beneath the central GC;

(3) to emphasize an important role of the regional
Crimea-Caucasus-Kopetdagh strike-slip fault zone in for-
mation of the present-day geomorphological appearance
of the GC;

(4) to use the Kuban trough (western segment of the
Ciscaucasia trough system) data to substantiate the as-
signment of the basin, accumulated the pre-Quaternary
Ciscaucasia trough-fill sediments, to the category of the
continental marginal sedimentary basins ("pericratonic
troughs", as termed by [Muratov, 1972]);

(5) to show that the clastic sediments, transported by
water flows from the East European and Scythian plat-
forms and adjacent folded belts, primarily filled this basin
in the Cenozoic;

(6) to give reasons for the fact that the Kuban trough
underwent transformation from pericratonic to piedmont
trough, which started to accumulate the GC-derived sedi-
ments not earlier than the Late Pleistocene.

Addressing these issues has important practical im-
plications. Knowing of the onset time of the GC uplift and
genetic type of the Ciscaucasia troughs in the pre-Late
Pliocene - Quaternary is in an obvious way directly related
to discovery prospects of some crude ore and hydrocarbon

https://www.gt-crust.ru
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materials in the western segments of the GC and Ciscaucasia.
These are focused on identifying sources and potential
scales of Rare-Earth-titanium placers in Ciscaucasia, per-
forming metallogenic regional analysis, developing strate-
gies for the discovery of new oil and gas accumulation
zones etc. On one hand, the Miocene substantially quart-
zous sands and sandstones in Ciscaucasia are good oil
reservoirs, but on the other hand, they host Rare-Earth-
titanium placers. If it is considered that the pre-Late Plio-
cene - Quaternary Ciscaucasia troughs are pericratonic
basins, then one has to admit the clastic material, com-
posing these sands and sandstones, to be derived not from
the GC complexes but from the cover and basement com-
plexes of the East European and Scythian platforms north
of Ciscaucasia. A new interpretation of the evolution of the
northern parts of the Black Sea-Balkan-Anatolian-Caspian
megaregion, as well as of the filling mechanism for the
Kuban and other Ciscaucasia troughs, requires a radical
revision of the a priori conditions of numerical models for
evolution of the generation-accumulation hydrocarbon sys-
tems therein.

2. BLACK SEA-BALKAN-ANATOLIAN-CASPIAN
MEGAREGION. GEOLOGICAL-TECTONIC OUTLINE
The GC orogen is a small peripheral fragment of a vast

mountainous area - the Alpine-Himalayan belt. This area
structure is primarily composed of irregularly deformed
Mesozoic and Cenozoic complexes and secondarily of the
Paleozoic and Precambrian folded formations. Tectonical-

ly, this belt formation is now commonly interpreted as a
direct consequence of the collision between the northern
Arct-Laurasia and Gondwana continental masses [Stampfli,
Borel, 2002] (Fig. 3).

The Neoproterozoic and Paleozoic southern and south-
western margins of the Baltica paleocontinent - Precam-
brian basement of the East European platform - were bor-
dered by the Tethys Ocean whose lithosphere subducted
beneath the Baltica continental margin [Natalin etal.,, 2012;
Okay, Nikishin, 2015; Aygtl et al., 2016]. In the Paleozoic,
the Baltica became a part of the Arct-Laurussia and later -
a part of Arct-Laurasia composite continents [Kuznetsov,
2009; Kuznetsov et al.,, 2010], and its southern and south-
western margins grew due to the accretion of terranes:
either already broken away from the Arct-Laurasia and dif-
ferent parts of the northern Gondwana margin (Hanseatic
and Cadomia-Avalon terranes) or formed initially as in-
traoceanic formations - volcanic arcs, oceanic plateaus,
oceanic basin lithosphere relics (Galatian terranes) [von
Raumer et al., 2013; Stampfli et al., 2013].

As aresult, by the end of the Carboniferous (~300 Ma),
a wide band of terranes had been accreted to the southern
and southwestern margins of the East European (Baltic)
part of Arct-Laurasia. At the end of the Permian and in the
Triassic, a large band-like fragment of the continental litho-
sphere (whose parts are known as Cimmerian terranes)
was broken away from the northern Gondwanian mar-
gin. The drifting movement of this band-like fragment of
the continental lithosphere towards Arct-Laurasia caused

e e Caspian
L e e ey e
Scythian:Platform Sea
EEEEE {
i 3
\Q ﬁ—*\

——= Greater Caucasus - \420 -
Ny
- = i

Central
Pontides=:

\) Gondwanabdenved

terranes accreted to the Baltlca ' *-

!
200 km

in the Late Mesozmc Cenoz0|c 2

Metamorphlc complex :::
- of the Central Pontides

1

Teisseyre-Tornquist Zone and its inferred
continuation across the Odessa Shelf,
Crimean Isthmus and Sea of Azov

Supposed boundaries
of the Hanseatic terranes

~z Supposed southern boundary
“ of the Cadomian-Avalonian terrains

Fig. 3. Major geological-tectonic structures of the Black Sea-Balkan-Anatolian-Caspian megaregion (simplified after [Okay et al., 2001]

and modified after [Okay et al., 2013]).
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the Tethys Ocean to fracture into decreasing Paleo-Tethys
Ocean and increasing Neo-Tethys Ocean (Fig. 4).

Some of the Cimmerian terranes which were broken
away from the northern margin of Gondwana (the part of
it that now is the northern margin of Southeastern Africa

and, perhaps, partially of Arabia) are actively involved in
the basement structure of the Southern and Eastern Turkey:.
They are termed Taurides or sometimes Anatolides-Tau-
rides [Meinhold et al.,, 2013; Avigad et al., 2016]. The Iranian
domain, adjacent to the Taurides on the east, is a fragment
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Fig. 4. Paleogeographic scheme of the northern margin of the Tethys Ocean for the the Tithonian (simplified and supplemented after

[Wilhem, 2014a, 2014b, 2014c]).
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Fig. 5. Location of relics of the Mesozoic and Cenozoic volcanic arc settings and sutures on the map of the Mediterranean-Caspian

region (simplified after [Gallhofer et al., 2015]).
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of Arabia [Zakariadze et al., 2007; Ustaémer et al., 2013;
Moghadam et al., 2017; and references therein].

It is generally considered that the closure of the Paleo-
Tethys Ocean gave rise to the formation of suture zones:
Izmir-Ankara-Erzincan suture zone in the Anatolian Penin-
sular, Vardar Zone in the Balkans, and Sevan-Akera ophio-
lithic belt in the Lesser Caucasus (see Fig. 3; Fig. 5). The
Intra-Pontide suture zone resulted from the closure of
the Izmir-Ankara basin (sometimes termed Intra-Pontide
Ocean) [Bozkurt et al., 2012]). The currently available and
reliable geochronological dataset, including the age dates
for overpressured complexes and ophiolites, as well as bio-
stratigraphic interpretations of radiolarites in ophiolites,
limits the existence of this ocean to an interval of ~255-
~65 Ma [Gonclioglu et al.,, 2008, 2014; Galoyan et al., 2009;
Rolland et al., 2009, 2016; Celik et al., 2011; Akbayrama
et al,, 2013; Ozdamar et al,, 2013]. The Pontides are the
Triassic-Cretaceous complexes and relics of their composed
paleostructures formed in the Izmir-Ankara oceanic basin
and in its margins. The Pontide distribution area includes
three different terranes - Strandja (Thrace basin base-
ment), Istanbul (sometimes termed Istanbul-Zonguldak)

Volcanic arc

Tithonian

and Sakarya. The Pontides are sometimes also subdivided
geographically into Western and Eastern Pontides.

The Bitlis-Zagros suture zone is a result of the closure
of the Neo-Tethys Ocean - the Late Cenozoic collision zone
between the Arabian and North Eurasian plates [Okay et
al,, 2010; Moghadam et al,, 2017; Yilmaz et al.,, 2013; Chiu
etal, 2013] (see Fig. 3; Fig. 5).

During the Mesozoic and Cenozoic, the Tethys Ocean
experienced the existence of a vast volcanic arc system
(Fig. 5). However, the currently available data on the Juras-
sic magmatic rocks, common in the GC and Crimean Moun-
tains, testify to rhyolite-basaltic (bimodal) character of
this magmatism [Morozova et al., 2017; Gerasimov et al,,
2022; Kaigorodova, Lebedev, 2021, 2022; Kuznetsov et al,,
2022; Romanyuk et al., 2024]. Such magmatism does not
seem to be directly related to arc (suprasubduction) vol-
canic activity.

During the Late Cretaceous and Early Cenozoic, the
northern Black Sea part of the Black Sea-Balkan-Anatolian-
Caspian megaregion underwent submeridional extension
accompanied by large-scale shears and their parageneti-
cally connected folds, faults, and magmatism. That gave
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Fig. 6. Tithonian to Early Pliocene paleotectonic reconstructions of the Black Sea-Balkan-Anatolian-Caspian megaregion, illustrating
the formation of the Black Sea basins (dark-green filling), after [Sosson et al.,, 2016].

AESA basin - Ankara-Erzincan-Sevan-Akera basin; TASAM - Analolides-Taurides + South Armenian microplate; K - Kirsehir Block;
SR - Shatsky Rise; MBSR - Mid-Black Sea Ridge; EBSA - East Black Sea basin axis; AESA SC - Ankara-Erzincan-Sevan-Akera spreading
center; AESA SZ - Ankara-Erzincan-Sevan-Akera suture zone; TTL - Teisseyre-Tornquist Line.
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rise to the formation of the Black Sea basin and its deep-
water West and East Black Sea basins with oceanic-type
crust (their formation time is Late Cretaceous - Eocene)
[Hippolyte et al., 2010, 2018; Nikishin et al., 2015a, 2015b,
2015c; Sosson et al,, 2016] (Fig. 6). The Istanbul Block was
broken away from the Dodrogea-Moesia and separated
from it by the Black Sea basin (see Fig. 3).

After the Arct-Laurasian and Gondwanan continental
masses had joined each other, the Black Sea-Balkan-Anato-
lian-Caspian megaregion became the northern part of a
vast epicontinental basin (megabasin) named Paratethys.
This megabasin was a complex system of basins and sub-
basins joined to each other by narrow straits (see Fig. 2).
Damming straits occasionally interrupted the connection
of basins and sub-basins with the Mediterranean sector of
the Global Ocean and caused drastic changes in hydrologi-
cal regime, catastrophic sea level drops, as well as change
from marine to freshwater faunal communities etc. [Popov
etal, 2009, 2010; Popov, Patina, 2023].

}
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3. THE GREATER CAUCASUS: A GEOLOGICAL
AND GEOPHYSICAL OUTLINE

In the first approximation, the structure of the Caucasus
region (Fig. 7) consists of four main tectonic units - Greater
(North) and Lesser (South) Caucasus Mountains and their
separating Central Caucasus depression - Rioni and Kura
basins or Rioni-Kura trough system (sometimes named
Transcaucasia). Northward of the Greater (North) Caucasus
Mountains, there is the Ciscaucasia trough system.

The GC Mountains and Ciscaucasia are characterized
by a wide distribution of Mesozoic to Cenozoic sedimenta-
ry strata formed in the northern part of the Eastern Para-
tethys. Ciscaucasia consists of the Kuban trough (eastern
part of the Indol-Kuban trough) in the west and Tersk-
Caspian trough in the east, separated by the Stavropol
uplift.

The Pre-Jurassic basement of the GC was formed in
the Paleozoic due to accretion of terranes, broken away
from the northern Gondwanan margin and/or emerged
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Fig. 7. Google Earth image-based scheme of the plate motion in the Black Sea-Balkan-Anatolian-Caspian megaregion.

Volumetric white arrows and numbers therein show displacement directions and displacement rates (mm/yr) for the structures of
the Anatolian Peninsular, Lesser Caucasus, Iranian Block and Arabian Plate (after [Lukk, Shevchenko, 2019]). Thin white arrows and
nearby numbers show displacement directions and displacement rates (mm/yr) for the stations in Russia (CRAO - Crimea, MOBN -
Obninsk, ARTU - Arti, ZECK - Zelenchuk, KISL - Kislovodsk, TRSK - Terskol, VLKK - Vladikavkaz), Romania (BUCU) and Iran (TEHN)
(after [Milyukov et al., 2015]). Pliocene-Quaternary magmatic fields are red-filled, 1 - Elbrus, 2 - Pyatigorsk intrusions; 3 - Kazbek,
4 - Aragats, 5 - Ararat. Troughs: IK - Indol-Kuban, TC - Tersk-Caspian, R - Rioni, K - Kura, SU - Stavropol Uplift, GC - Greater Caucasus,
LC - Lesser Caucasus, CCK - Crimea-Caucasus-Kopetdagh strike-slip fault.
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in the Paleotethys Ocean. The structural basement of the
Lesser Caucasus is composed of the complexes of marginal
oceanic and/or intraoceanic genesis, formed in the Paleo-
tethys Ocean and in its margins. According to M.L. Kopp
[Kopp, 2004], different parts of the present-day Caucasus
region were formed structurally at various times: the Lesser
Caucasus - in the Late Cretaceous - Early Paleogene, the
central segments of the GC - in the Paleogene, and the
areas of northwestern and southeastern dips of the GC - in
the Middle Neogene - Quaternary:.

The present-day GC structure reveals the southern and
northern slope domains separated by the so-called Main

41°30'

42°00'

Caucasian fault. The northern slope or northern domain of
the GC consists of more fractional north-south structural
units (Fig. 8):

- Main Range zone including the Pereval and Elbrus
subzones;

- Peredovoy Range zone;

- Bechasyn zone, earlier named Laba-Malka zone or
North Caucasus marginal massif [Milanovsky, Khain, 1963;
Milanovsky, 1968].

Thin shallow-marine or even subcontinental coal-bear-
ing Upper Mesozoic strata, defined clearly within the Be-
chasyn zone, compose the gently north-dipping monocline
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Fig. 8. Schematic illustrations of the general structure of the Caucasus and adjacent regions (a), tectonic zoning of the central and
eastern parts of the Peredovoy fault zone, Bechasyn zone and adjacent areas (b) and the geological structure upstream of the Malka

River (c).

(a) - tectonic scheme of the Greater Caucasus and adjacent areas ([Kuznetsov et al., 2025], after [Khain et al., 1998]). 1: a - epi-Hercynian
Scythian plate: Stavropol arch (ST), Limestone Dagestan zone (LD), b - Cadomian Transcaucasia microcontinent; 2: a - Cenozoic troughs:
Kuban (KB), Tersk-Caspian (TC), Gusar-Divichi (GD), Rioni (R), Kura (KR), b - Eastern Pontides (EP) and Lesser Caucasus structures:
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Adjara-Trialet (AT) and Somkheti-Karabakh (SK) zones; 3 - high-mountain (axial) part of the Greater Caucasus: a - Preredovoy Range
zone, b - Main Caucasian Range zone; 4: a - schist zone of the southern slope of the Central Caucasus and Main and Lateral ranges of
the East Caucasus, b - flysch zones of the West and East Caucasus.

(b) - tectonic scheme of the central and eastern parts of the Peredovoy Range (PR) zone, Bechasyn zone, and adjacent areas. Simplified
after [State Geological Map..., 2004, 2021].

(c) - scheme of the geological structure of the upstream part of the Malka River (simplified after [State Geological Map..., 2004]).

5-7 - neoautochthonous structures: 5 - Elbrus volcanic center (Pliocene - Holocene); 6: a - syn-Alpine North Caucasus monocline
(Callovian - Paleogene), b - syn-Cimmerian discontinuously folded Laba-Malka zone (Synemurian - Bathonian); 7 - fragments of the
Hercynian Molasse trough (Carboniferous - Permian); 8-9 - Cimmerian paraautochthonous structures: 8: a - Phiya-Arkhyz and Arkhyz-
Klych blocks of the Arkhyz-Guzeripl depression (Synemurian - Aalenian), b - Middle Jurassic Sancharo-Kardyvach gabbro-diorite-granite
massif; 9 - Mesozoic (?) intrusions of the plagiogranite-doleritic complex; 10-12 - allochtonous structures: 10 - ophiolitic nappes: a -
undissected crustal complexes, b - mantle tectonites; 11: a - Hercynian nappes composed of the Silurian-Triassic strata, b - pre-Her-
cynian (?) nappes of the Makersk (MK) zone, Kuban (KB) block and Shaukamnysyrt (ShK) zone, composed of presumably Precambrian
metamorphites; 12 - Lakhran allochthone, Silurian - Early Devonian sedimentary strata; 13-18 - autochthonous structures: 13 - pre-
Hercynian, primarily metamorphic, complexes of the Buulgen block (BU) of the Main Range zone, Kuban (KB) and Baksan (BK) blocks of
the Peredovoy Range zone, Malka-Khasaut (MKh) area of the Bechasyn zone; 14 - Late Paleozoic (Carboniferous) granitoids: Ullukam,
Belaya Rechka and Malka complexes; 15 - metamorphic Khasaut group; 16 - metamorphosed Khasaut group; 17 - Urlesh formation;
18 - Manglay formation and Cheget-Lakhran Suite unstratified; 19: a - faults, b - thrusts; 20 - zonal boundaries for (a, b) and geological

boundaries for (c).

and overlap the intensively dislocated and unevenly meta-
morphosed Upper Precambrian and Paleozoic strata and
their associated hyperbasites and granitoids. This part of
the northern slope of GC orogen is essentially the Alpine
uplift-involved structural element of the Ciscaucasian part
of the epi-Hercynian Scythian platform. That is how this
part of the GC orogen (Laba-Malka zone) was described
by E.E. Milanovsky: "During the greater part of the Alpine
cycle, this zone belonged to the epi-Hercynian southern
Ciscaucasia platform, but only at the end of this cycle it
was involved in the Greater Caucasus uplift as its plainly
structured wing..." [Milanovsky, 1968, p. 15]. "During the
Malm and in the beginning of Cretaceous, the Northern
Caucasus trough was located primarily in the northern
wing <...> of the Greater Caucasus, but further north in the
central Caucasus, in the southern part of the epi-Hercynian
platform (Laba-Malka zone)" [Milanovsky, 1968, p. 34, and
further <...> (in Oligocene) "most intensive uplift, under-
gone by the Central segment of the Greater Caucasus, in-
volves adjacent parts of the epi-Hercynian platform and
middle massif: the Laba-Malka zone on the north, trans-
forming into monoclinally structured wing of the Greater
Caucasus Mountains" [Milanovsky, 1968, p. 38].

The western (northwestern), central and eastern (south-
eastern) segments, commonly distinguished along the GC
strike, obviously differ from each other by the orogen width,
its relief height, and hypsometry of the top of the pre-
Alpine basement (see Fig. 7; Fig. 8). The maximum width
and relief height of the orogen are typical for the central
segment. The Pre-Mesozoic crystalline basement is ex-
posed in places in the axial zone of the central segment
of the GC at a height of more than 2 km. The Jurassic and
Cretaceous formations are predominantly found in the axial
zone of the western and eastern segments.

Cross-sectional view of the present-day GC Mountains
clearly shows their asymmetry that consists of the plainly
structured, relatively wide northern wing and the com-
plex southern wing been characterized by the southward-
verging folded overthrusts.

The results obtained using different seismic methods
(deep seismic sounding (DSS), various modifications of
seismic reflection method (SRM), microseismic sounding
method (MSM)) have not yet provided the opportunity
for unambiguous interpretation of the internal structure
of some anomalously thin crustal zones of the GC, includ-
ing the Main Caucasus Thrust zone. Seismic images of the
environment, obtained through different methods, do not
lend themselves to obvious joint interpretation (Fig. 9).
In particular, neither seismic imaging nor drilling survey
has yet yielded reliable evidence of a low-angle thrust for
the tectonic zone associated with the Main Caucasus fault
(thrust) zone.

The scientists who study the Caucasus region still have
no consensus about the Alpine (syn-Alpine) structure of
longitudinal segments and transverse zones of the GC, as
well as about their formation settings. In the literature,
there are very different estimates for scales and ways of
the contraction of the Earth’s crust that accompanied the
formation of the present-day GC orogen [Yakovlev, 2015].
There is a widespread perception that the GC is composed
of thick-skinned (to 15-20 km) nappes gently sloping to
the north. The upper nappe is composed of ancient crys-
talline basement rocks exposed in the Main Range and
coming into contact with their underlying Mesozoic and
Cenozoic rocks along the tectonic surface - Main Caucasus
Fault [Khain, 1984; Dotduev, 1986; Vasey et al., 2020, 2023;
and others] (Fig. 10). In contrast, the geologists with a
large Caucasus fieldwork experience have reasonably be-
lieved and continue to believe that there was only mod-
erate contraction of the crust in the axial zone of the cen-
tral segment of the GC at the Alpine stage. No evidence
was found for large-amplitude thrusting, tectonic coupling
of the Earth’s crust or subduction at that time [Adamiya
et al,, 1989; Leonov, 2007; Somin, 2000, 2021; Adamia et
al,, 2011].

The substantially alternative views are presented in
[Patina et al., 2017]. The authors of this article believe
that intense folding and faulting (up to the formation of
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Fig. 9. Comparison of the results for micro-
seismic sounding along the profile in the
Ossetian sector of the Greater Caucasus
[Gorbatikov et al., 2015] with those along
the Stepnoe - Bakuriani DSS velocity pro-
file [Pavlenkova, 2012]. Numbers show
seismic wave velocities in km/s. 1 - bound-
aries between different seismic-velocity
layers; 2 - reflecting segments. K, and K, -
intracrustal boundaries; M - Moho bound-
ary, M, - intramantle boundary. A white ver-
tical band along the microseismic sound-
ing profile corresponds to the Roki tunnel
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Fig. 10. Structural models of the eastern part of the Central Greater Caucasus and adjacent regions (Rioni-Kura and Tersk-Caspian
troughs).

(a) - seismogeological cross-section, (b) - generalization (a) (after [Mossar et al., 2022]); (c) - conceptual model (after [Vasey et al.,
2020, 2023]). MCF - Main Caucasus fault.
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Fig. 11. Zones of postdiagenetic transformations of the Lower Jurassic organic matter in the Greater Caucasus and Ciscaucasia (after
[Patina et al., 2017]): 1 - mesocatagenesis MC2, 2 - mesocatagenesis MC3, 3 - mesocatagenesis MC4-5, 4 - apocatagenesis AC1-2, 5 -
protometagenesis PM, 6 - mesometagenesis MM, 7 - Crimea-Caucasus-Kopetdagh strike-slip fault boundary on the surface, 8 - Crimea-

Caucasus-Kopetdagh strike-slip fault amplitude ~200 km.

large overfolds and south-verging thrusts) in the southern
slope zone of the GC are due to the Late Cenozoic right-
lateral transpression regime therein. The most prominent
example of these deformations is the Crimea-Caucasus-
Kopetdagh strike-slip fault zone (Fig. 11), running through
the Apsheron Threshold and southern slope zone of the GC
from the Kopetdagh to the Crimean Mountains. It spatially
coincides with the traditionally identified Main Caucasus
fault zone, is traced throughout the southern slope of the
GC, with displacement of 150 to 200 km thereon [Kalugin,
1946; Gorshkov, 1947; Patina et al., 2017]. Presently, 26-
28 mm/yr right-lateral motions along this strike-slip fault
zone are supported by GPS observations [Milyukov et al,,
2015]. The right-lateral displacements under compression
along this zone gave rise to the formation of the Main Range
structure and caused erosion dissection of the present-day
GC orogen relief. Nowadays these views on the GC history
and formation mechanism find more and more supporters
that also include the authors of the present paper.

Note that most of the structural models of the GC, in-
cluding its northwestern slope, were initially created with-
in the imbricate fault structure of the GC [Popkov, 2006;
and many others.]. However, in some structural and evolu-
tionary models of the western segment of the GC, based on
fragmented factual data without involving a-priori ideas
about the deformation style, a general structure of this oro-
gen corresponds almost entirely to a large-scale flower-
shape structure formed around the transcrustal shear zone
with some additional compression. One such example is
shown in Fig. 12. As well as [Patina et al., 2017], we be-
lieve that the present-day appearance of the GC (and the
structure of the northern part of the Black Sea-Balkan-

Anatolian-Caspian megaregion as a whole) is largely a re-
sult of motions and deformations in the extended post-Plio-
cene Crimea-Caucasus-Kopetdagh right-lateral strike-slip
fault zone, superimposed on the heterochronous struc-
tures of the Alpine-Himalayan belt and southern Scythian-
Turan platform.

Therefore, the present-day GC Mountains are the ele-
ment of the northern (hanging) wall of the Caucasian seg-
ment of the Crimea-Caucasus-Kopetdagh right-lateral
strike-slip fault zone representing the uplifted block of
rocks, with some of them deformed as far back as the
Cimmerian and at ealier evolutionary stages of the region.
The current look of the GC, at least of its western (north-
western) segment, did not come directly from the frontal
collision between Arabia and Eurasia, but is largely a re-
sult of postcollisional processes that did not emerge until
the Pliocene or more likely until the very beginning of the
Pleistocene.

4. PLIOCENE DELAMINATION
OF THE LITHOSPHERIC FRAGMENT BENEATH
THE CENTRAL GREATER CAUCASUS
The probable mechanisms of rapid uplift and subsidence
of single crustal blocks, during the several million years,
were dealt with in a number of E.V. Artyushkov papers
[Artyushkov, 1998, 2010, 2012; Artyushkov, Chekhovich,
2023]. Rapid crustal subsidence without significant exten-
sion (formation of deep sedimentary basins) may cause
lithospheric phase transitions (for example, eclogitization).
The rapid crustal uplift may be due to tectonically caused
rapid mantle fluid infiltration into the lithosphere, which
drastically reduces the viscosity of a substance [Kiselev et
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Fig. 12. Seismogeological section across the western part of the Greater Caucasus and adjacent regions (Tuapse and Kuban troughs). Drawn by A.V. Khortov (Shirshov Institute of Oceanology of
RAS). The inset shows the profile location.
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al., 2015]. Such processes in particular may occur during
delamination of the lithospheric fragment into the mantle
and its replacement by the asthenospheric substance. The
episodes of delamination of the lithospheric fragments
into the mantle are described and studied in different re-
gions of the world: beneath the southern edge of the Sierra
Nevada batholith, beneath the Mojave Desert; beneath the
Western Cordillera, Altiplano-Puna Plateau and western
edge of the Eastern Cordillera; beneath the Menders Mas-
sif in the central Anatolian Peninsular; beneath the north-

(a) ~18Ma

eastern Anatolian Peninsular; beneath the Jinsha Suture in
the Northern Tibet, and beneath the Quiantang and Lhasa
blocks in the Southern Tibet, see review in [Romanyuk,
Tkachev, 2010; and others].

The reference object, namely the most reliably and thor-
oughly studied object, is likely the Pliocene episode of de-
lamination beneath the southern edge of the Sierra Nevada
batholith (Fig. 13). Seismic tomography of the upper mantle
beneath this region revealed a high velocity zone at 100-
250 km depth, similar in shape to a cylinder with a radius

Sierra Nevada
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Fig. 13. A delamination model for the lithospheric root from beneath the Sierra Nevada batholith (after [Zandt et al., 2004]).

(a) - the subduction of the Juan de Fuca Plate underneath the North American continental margin where the relic Late Mesozoic vol-
canic arc lies in the form of the Sierra Nevada batholith, underlain by the dense garnet-pyroxene rocks. At the back of the batholith,
there is the suprasubduction volcanic zone. (b) - the opening of a slab window, fingering of hot asthenosphere underneath the conti-
nental margin, strike-slip fault activity in the San-Andreas fault system, beginning of destabilization of the dense rocks underlying the
Sierra-Nevada. (c) - Initial phase of collapse of the destabilized dense rocks, underlying the Sierra-Nevada, into the mantle, accom-
panied by pulse of potassium-rich volcanism. (d) - the main phase of collapse of the lithospheric material into the mantle where it
acquires a "mantle drop" shape; formation of the Tulare basin and V-shaped protrusion on the Moho surface above the downwelling
zone; geothermal activity in the extension area at the eastern margin of the Sierra-Nevada (Owens Valley, Panamint and others). The
black rectangular contour shows the area of crust-bottom anisotropic zones associated with strike-slip fault activity (active detach-
ment faulting).
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of about 60 km and named "mantle drop" [Zandt et al.,
2004].

Geologically, the Great Valley and the Sierra Nevada
Mountains are the relics of the forearc basin and volcanic
arc, formed in the Mesozoic, when the Farallon Plate sub-
ducted beneath the western margin of the North American
Plate. The Great Valley throughout the Cenozoic (and at
present) has been a sedimentary basin. The Sierra Nevada
basement is primarily composed of the Late Cretaceous
(~85 Ma) and older granitoids, and of various metamor-
phic complexes, unconformably overlain by the Eocene
and younger sedimentary and volcanic formations. Due to
low crustal seismic velocities beneath the Sierra Nevada
(<6.2 km/s), this entire block is interpreted as a granite
batholith [Fliedner et al., 2000; Ducea, 2002; and refer-
ences therein]. It is considered that the thick granite crust
and mafic (in places ultramafic) crustal root were formed
in the Late Cretaceous, just as most of the Sierra Nevada
batholith was [Ducea, 2001]. Garnet-pyroxene paragene-
sis of the batholith crust makes it denser as a whole and
some of its fragments — much denser than the standard
lithospheric mantle, and transforms the entire system into
a gravitationally unstable structure.

The results of a study of numerous crustal and mantle
xenoliths from the Miocene and post-Miocene lavas pro-
vide direct evidence of change in the lithospheric composi-
tion beneath the Sierra Nevada during this period [Ducea,
Saleeby, 1998] (Fig. 14). Xenoliths from the Miocene volca-
nites mark the three-layer lithospheric column consisting
of (1) 30-35 km thick granite batholith underlain by (2)
lower crustal layer and lithospheric mantle up to 70 km in
thickness, mafic or ultramafic in composition, character-
ized by garnet paragenesis, and its underlying (3) mantle
peridotites. The Late Pliocene and Quaternary volcanites
do not contain garnet-bearing xenoliths, and 35 to 70 km
deep lying xenoliths indicate the presence of mantle peri-
dotites. These data are in good agreement with the results
of the detailed seismic studies, which yield seismic wave
velocities of 7.4-8.2 km/s for the mantle layer directly be-
neath the Moho boundary and relatively low seismic wave
velocities of~7.8 km/s for the intermediate layer, thus im-
plying high temperatures therein [Fliedner et al., 2000].
Compositional changes in the lithospheric column should
have occurred 3-10 Ma [Ducea, Saleeby, 1996, 1998]. That
is a very strong argument in favor of delamination of the
lower crust and its underlying lithospheric mantle in the
same period. A short-term pulse of potassium-rich (to po-
tassium-ultrarich) and low-¢g,, volcanism with an age of
~3.5 Ma is thought to be related to the initiation of dela-
mination [Manley et al., 2000; Farmer et al., 2002]. Magma-
tism dating-based partial replacement of the lithosphere
with asthenosphere spatially concides with the Pliocene -
Holocene uplift of the Sierra Nevada, caused by the change
in the buoyancy of the upper mantle [Jones et al., 1994,
2004].

Another example is the area of the Central Andes in the
western margin of the South America. High-precision seis-
mic tomography [Graeber, Asch, 1999; Schurr et al.,, 2006]
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Fig. 14. Tectonomagnetic stratification of the Miocene and Plio-
cene-Quaternary lithosphere of the Sierra Nevada based on the
lava and xenolith research.
(a) - equilibrium temperatures for xenoliths from the Neogene-
Quaternary lavas (dashed square shows the data reported in
[Ducea, Saleeby, 1998] for the post-Miocene lavas) and magma
melting temperature of sample WC-1. After [Ducea, Saleeby, 1998;
Lee et al,, 2001; Elkins-Tanton, Grove, 2003];
(b) - a schematic view of the Miocene and Pleistocene lithospheric
columns marked by xenoliths. 1 - granitoid crust; 2 - 3 - litho-
spheric root, composed largely of garnet pyroxenites (2 - low-Mg,
3 - high-Mg); 4 - 5 - asthenospheric mantle at temperatures of
700-900 °C (4) and 1000-1200 °C (5). After [Ducea, Saleeby, 1998;
Leeetal, 2001, 2006; Elkins-Tanton, Grove, 2003].
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(Fig. 15), petrogeochemical [Avila-Salinas, 1991; Kay et al.,
1994] and other [Garzione et al., 2006] data, as well as the
thermomechanical modeling results [Sobolev et al.,, 2007;
Quinteros et al., 2008], suggest the possibility of delamina-
tion of the lower-crustal and subcrustal lithospheric mantle
fragments and their collapse into the mantle beneath some
areas of the eastern part of the Western Cordillera, Altiplano-
Puna Plateau and western edge of the Eastern Cordillera.
The process is still going on.

At the boundary between the Altiplano Plateau and
Eastern Cordillera, there is the Frailes complex - one of
the world’s largest ignimbrite complexes, - whose peak
activity dates back to approximately 7 Ma [Avila-Salinas,
1991], and the boundary area between the Altiplano and
Puna plateaus encompasses the Altiplano-Puna Volcanic
Complex (APVC) fields. The internal structure of the com-
plex is dominated by dacites and rhyolites (more than
95 % of the entire volume) - igneous rocks with SiO, con-
tent of 65-70 wt. %.

Magmatic activity in this volcanic complex (ignim-
brite bodies, basalt flows, shoshonitic volcanic occurrences
etc.) was closely connected with tectonic deformations
and covered the area from the Western Cordillera to the
western margin of the Eastern Cordillera. It lasted from 27
to 5 Ma with its activity peak found to fall within the end
of this period. Then it began to retreat westward; approxi-
mately 4 Ma it only occurred up to the western part of the
Altiplano-Puna Plateau, and in the last 2 Ma - primarily
in the Western Cordillera volcanic arc [Avila-Salinas, 1991;
Kay et al., 1994]. These magmatic occurrences are thought
to be caused by the collapse of the thick eclogitic root of the
South American Platform subducting beneath the Andes
[Kay R.W,, Kay S.M., 1993] (Fig. 16).

The above two and many other episodes of lithospheric
delamination occurred in tectonically active regions, which

had previously experienced long-term episodes of subduc-
tion and/or collision. Such geodynamic settings, in which
insufficiently heated lithospheric fragments are rapidly
drawn into depth, give rise to the formation of high-den-
sity mineral associations and a "solidified" fragment of
the lithosphere. Later, under the influence of the external
factors, this lithospheric fragment becomes unstable and
may collapse into the mantle. Full detachment of the de-
laminated lithospheric fragment from the overlying crustal
block (or coupling loss between the two structures) usual-
ly dates back to 1-2 Ma. The episode of delamination is ac-
companied by short-term episodes of magmatism whose
peak activity lasts no longer than several million years.
These peak magmatic events more often coincide tem-
porally with detachment of the delaminated lithospheric
fragment. After the collapse of the lithospheric fragment,
due to isostatic rebound, the overlying crustal block, de-
tached from the thick lithospheric root, undergoes rapid
isostatic uplift by 2 km or more.

The data accumulated make it possible to substantiate
views according to which slow and long-term collisional
compression is not the main cause for the GC uplift that
is most likely due to seismic tomography evidence-based
rapid isostatic response to delamination of the lithospheric
fragment from beneath the Caucasus region [Koulakov et
al,, 2012; Zabelina et al.,, 2016] (Fig. 17).

We would especially like to note that the earliest pub-
lication we found on delamination of the fragment of lith-
ospheric mantle beneath the central Caucasus region is
[Ershov et al,, 1999]. This paper presents an integrated
review of the geological-geophysical data on the Caucasus
region, including gravity modeling, modeling of the sub-
sidence of the Ciscaucasia troughs, and computational mod-
eling for the elastic flexural part of the lithosphere. In
[Ershov et al,, 1999], it is shown that (1) topographic load,
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Fig. 15. A conceptual scheme of the seismic structure of the lithosphere of the present-day Central Andes at 21° latitude (after [Heit,

2005]).

The scheme is based on the results of P and S wave tomography. Moho boundary after [Yuan et al., 2002], WC - Western Cordillera
volcanic arc, WF - West Fissure fault, UK - Uyuni-Kenyani fault zone, SV - San-Vicente fault system, MAT - Main Andean thrust, LVZ -
low-velocity zone in the upper crust beneath the Western Cordillera and Altiplano Plateau, QBBS (Quebrada Blanca Bright Spot) - area

of strong reflections on the seismic waves sections.
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Fig. 16. Neogene-Quaternary ignimbrite magmatism of the APVC.
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(a) - a conceptual scheme of formation of giant ignimbrite fields. Basite magma rising from the mantle heated up the crust to promote
crustal melting. Tectonic deformations in the upper crust gave rise to the occurrence of numerous fractures in locally transtensional
upper crustal horizons along which the magma rose, reached the surface, and flew over vast areas as lava [de Silva et al., 2006]. (b) - lo-

cation of main magmatic centers (mostly calderas) of the APVC (the

larger the circle, the larger the caldera) and their age [de Silva et al,,

2006]. (¢) - the results of evolutionary modeling of orogenic subsidence and uplift of the Central Andes due to eclogitization of the lower
crust of the South American Platform subducting beneath the Andes. The orogenic subsidence occurs under additional loading condi-

tions at first and then the uplift takes place due to the collapse of th

e thick eclogitic root. Assuming that eclogitization started 10-9 Ma

ago, the beginning of delamination of the eclogitic root correlates well with catastrophic ignimbrite-producing eruptions 4-5 Ma ago
[Quinteros et al., 2008]. (d) - temporal variation in magmatic activity at the APVC. The curve shows a total volume of products of the
known ignimbrite eruptions (less reliable values are lighter-colored, rectangular width - 20). 1 - Artola; 2 - Vilama-Corutu [; 3 - Sifon
ignimbrite; 4 - Panizos; 5 -Vilama-Corutu I[; 6 - Chuhuhuilla; 7 - Pujsa; 8 - Pelon; 9 - Toconao; 10 - Atana; 11 - Puripicar; 12 - Tara;
13 - Juvina; 14 - Patao; 15 - Pampa Chamaca; 16 - Laguna Colorado; 17 - Purico; 18 - Filo Delgado. Numerical values are eruption
velocities at major activity stages. Magmatism started 10 Ma ago, its intensity was constantly increasing with time; 5-4 Ma ago there
occurred catastrophic events after which the activity has slowed down [de Silva et al., 2006].

generated by the Caucasus orogen, is insufficient to explain
the deep-seated profiles and history of the orogen-adja-
cent trough subsidence, reconstructed from a large amount
of evidence, and (2) the formation of the present-day high-
mountain relief of the central Caucasus requires crustal
thickening and removal of the lithospheric root due to some
mechanisms - conductive heating, convective removal or
delamination. However, by the time of [Ershov et al., 1999]
publication, no evidence had yet been found to substan-
tiate the choice of the most appropriate mechanism.

At the moment, a large amount of the Pliocene - Quater-
nary magmatic occurrences in the Caucasus region has al-
ready been dated, as well as a large amount of other char-
acteristics of the Pliocene - Quaternary magmatism has

already been obtained. A comparison between these age
determinations and delamination of the lithospheric frag-
ment beneath the central Caucasus allows ~2-3 Ma to be
considered as the time of detachment of the delaminated
lithospheric fragment, which was followed by a rapid iso-
static uplift of the Lesser and Greater Caucasus.

The first isotopic dating of the Pliocene volcanic rocks
of the GC was obviously performed as far back as the 1990s
[Lipman et al., 1993; Zhuravlev, Negrei, 1993; Hess et al,,
1993]. By now, the dating, as well as the petrological and
isotopic-geochemical studies of the Pliocene - Quaternary
magmatic rocks of the GC, is dealt with in a vast number
of papers [Milanovsky, Koronovsky, 1973; Koronovsky et
al., 1987; Kostitsyn, 1995; Gazis et al., 1995; Kostitsyn,
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Fig. 17. Seismotomographic model of the crust and upper mantle of the Caucasus region (after [Koulakov et al., 2012; Zabelina et al.,

2016]).

Bluish patters show the higher-velocity and denser zones in the mantle lithosphere, green stands for such block beneath Transcaucasia
(TC). The central Caucasus region exhibits upwelling asthenosphere and the process of the sublithospheric mantle to asthenospheric
matter replacement beneath the Lesser and Greater Caucasus. Red arrows show probable ways of feeding volcanic centers in the

Lesser (LC) and Greater (GC) Caucasus.

Kremenetsky, 1995; Bogatikov et al., 1998; Griin et al.,
1999; Gurbanov et al., 2004; Koronovsky, Demina, 2007;
Avdeenko etal., 2008; Lebedev et al., 2004, 2011a; Lebedeyv,
Vashakidze, 2014; Parfenov et al., 2019; Soloviev et al.,
2021a,2021b]. All large Pliocene - Quaternary volcanic oc-
currences of the GC (see Fig. 7) have been thoroughly re-
searched and reliably dated. In [Bindeman et al., 2021a],
consideration is being given to the synthesis and analysis
of a large amount of high-precision dating results and iso-
topic-geochemical data, previously published and newly
acquired by the authors for the Pliocene - Quaternary
rocks of the GC. We emphasize that high-precision CA-
ID-TIMS U-Pb dating of zircons from top and bottom of
the Chegem ignimbrite and its associated porphyry yields
indistinguishable age spectra recording 160 kyr of mag-
ma assembly and differentiation, with 2.9181+0.0014 Ma
eruption age as is constrained by the youngest zircon popu-
lation [Bindeman et al., 2021a]. In general, it is possible to
talk about two pulses of magmatism at ~2.92 and 1.98 Ma,
related to Chegem and Tyrnyauz, respectively; the Elbrus
and Tyrnyaus ignimbrites and granites yielded similar ages
at ~1.98 Ma [Bindeman et al., 2021a, 2021b]. This im-
plies that all these magmatic occurrences have a common
source probably located near Tyrnyauz [Bindeman et al,,
2021a, 2021b]. The Elbrus is characterized by repeated
Pleistocene-Holocene volcanic activity, with the latest erup-
tion occurred about two thousand years ago. There are also
other well-known magmatic and metamorphic events in
the GC during the Pliocene - Holocene [Lebedev et al., 2005,
2006, 2010a, 2010b; Chernyshev et al., 2014; Kaigorodo-
va et al,, 2021; Gazis et al.,, 1995]. In [Chernyshev et al,,
2014], itis proposed to distinguish two stages of high mag-
matic activity of the GC: Middle Pliocene (3-2 Ma ago, after
[Bindeman et al., 2021a]) and Early Neopleistocene.

The results for the Lesser Caucasus were summar in
[Shalaeva, 2024]. It was stated that the activity of the Aragats
volcano consists of four phases: I and II - 0.97-0.89, III -
0.74-0.68, IV - 0.56-0.45 Ma [Chernyshev et al.,, 2002; Le-
bedev et al,, 2011b]. The Gyumri ignimbrites (Jradzor and
Megrashat sections) date back to 0.65-0.70 Ma [Shalaeva
et al., 2020]. Therefore, the Gyumri ignimbrite formation
can be assigned to the end of phase III of the Aragats vol-
cano activity. The andesibasalts exposed at Kaps date back
to 2.25£0.10 and trachyandesibasalts exposed therein date
back to 2.1+0.2 and 2.25+0.10 Ma [Shalaeva et al., 2019]
and to 2.09+0.05 Ma [Ritz et al., 2016]. The ages of plateau
basalts and andesibasalts in Armenia are estimated to be
~2.5-2.0 Ma [Trifonov etal.,, 2016,2017] and 3.26-1.80 Ma
[Meliksetian, 2012], respectively.

The Arailer volcanic center includes the Arailer volcano
(2610 m) and some slag cones. In [Lebedev et al., 2011b],
it is supposed that this volcanic center was formed in two
stages. The first stage involved squeezing of dacite intru-
sions, and the second - andesite lava eruptions that could
occur synchronously with mafic effusive eruptions south
of the Arailer volcano. The andesites and dacites date back
to 1.23+0.03 - 1.37+0.04 Ma, the age of the rhyolitic ob-
sidians is estimated to be 1.26+0.05 Ma [Lebedev et al,,
2011b]. The basalts of the Kars-Digor Plateau are 1.27
+0.05 Ma old [Shalaeva, 2024].

It is also worthy of note that the Akchagyl transgres-
sion in the northern Black Sea and Caspian Sea attained
its peak at ~2.6 Ma, when the vast areas in the Caucasus-
Caspian region were flooded by seawater [Trifonov et al.,
2024]. By analogy with regional episodes of the surface
subsidence prior to delamination of the lithospheric frag-
ment beneath the Sierra Nevada and Central Andes, one
may suppose that the Akchagyl transgression was caused
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not by the Eastern Paratethys Sea level rise, but by sub-
sidence in the central Caucasus region beneath the litho-
spheric fragment delaminated later on. This serves as an
additional indirect indicator that clarifies the time of de-
tachment of the delaminated lithospheric fragment.

In a number of papers [Ershov, Nikishin, 2004; Trifonov,
Sokolov, 2017], the uplift of the Central Caucasus is at-
tributed to the asthenospheric flow propagating from the
Ethiopian-Afar superplume. In our view, however, this flow
could be a trigger that induced delamination of the litho-
spheric mantle fragment but it could not be the primary or
main cause of the rapid Pliocene - Quarernary uplift in the
Central Caucasus.

Rapid Quaternary uplift in the Greater and Lesser
Caucasus is also confirmed by the data obtained using tra-
ditional methods. In [Shalaeva, 2024], it is shown that the
absolute height of the bottom of the Shirak Basin (Lesser
Caucasus) did not exceed 250 m in the Akchagyl time (i.e.
~2.6 Ma ago) and is about 1.5 km nowadays. In the eastern
segment of the GC, at heights of about 2 km, in the area
of Akusha and on the Qusar Plateau near the Suval Dag
Mountain, there were found coarse-clastic formations, in-
terpreted as beach relics, which are biostratigraphically
dated as Miocene (Meotis or Pont?) [Drobyshev, 1929] and
Akchagyl [Trikhunkov et al., 2020], respectively.

5. QUATERNARY UPLIFT IN THE GREATER CAUCASUS
AND RIGHT-LATERAL STRIKE-SLIP FAULT ACTIVITY
IN ITS SOUTHERN SLOPE ZONE AS A PART
OF A GENERAL TECTONIC EVOLUTION OF THE BLACK
SEA-BALKAN-ANATOLIAN-CASPIAN MEGAREGION

Rapid Quaternary uplift in the GC after delamination
of the lithospheric root fits naturally with reliably recon-
structed tectonic evolution of the Black Sea-Balkan-Anato-
lian-Caspian megaregion. The Late Miocene - Quaternary

10-11 Ma

tectonics of this megaregion was impacted most by the col-
lapse of the Arabian slab during locking of the subduction
zone, marked in the present-day Black Sea-Balkan-Anato-
lian-Caspian megaregion structure by the Bitlis-Zagros su-
ture approximately 12 Ma ago [Keskin, 2003, 2007; Lei,
Zhao, 2007; Zor, 2008] (Fig. 18).

The slab collapse caused 1.5-2.0 km uplift of the Turkish-
Iranian Plateau and a pulse of volcanism in the eastern part
of the Anatolian Peninsular (see Fig. 7), where more than
half of the East Anatolian plateau is predominantly covered
by subalkaline volcanites [Akyol et al., 2006; Keskin, 2003,
2007]. This volcanism migrated northwards from the Bitlis
suture (~11 Ma) to the Caucasus (~3-2 Ma). The Pn wave
velocities (typical of the mantle layer directly beneath the
crustal bottom - Moho boundary) drop to 7.8 km/s un-
der the western part of the Anatolian Peninsular and to
7.6 km/s under its eastern part [Al-Lazki et al., 2004].
Besides, the seismic velocity drop is recorded partially un-
der the GC [Koulakov et al., 2012; Trifonov, Sokolov, 2018].
This testifies to the lack of the lithospheric mantle layer
and its replacement by the asthenosphere under almost
the entire Anatolian Peninsular [Vinnik et al., 2016] and
partially under the Caucasus.

Subsequent delamination of the lithospheric fragments
beneath the Anatolian region and then under the Central
Caucasus region caused a rapid reorganization of tec-
tonic motions throughout the Black Sea-Balkan-Anatolian-
Caspian megaregion. In particular, an important role was
played by newly formed mantle flows along the strike of
the collision zone [Kopp, 1997]. Besides, this is reflected in
the separation of the new Anatolian microplate along the
Anatolian system of faults converging in the Karliova triple
junction area (see Fig. 7; Fig. 19). The North Anatolian
shear zone separates the Anatolian microplate from the
Black Sea block on the west, and the East Anatolian shear

Fig. 18. I[llustration of the post-Miocene collapse of the lithospheric fragment beneath the eastern part of the Anatolian Peninsular
(after [Keskin, 2007]). AF - African plate, NATF - North Anatolian fault system, SATF - South Anatolian fault system.
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zone separates it from the Arabian plate on the southeast
[Faccenna et al., 2006]. The locus of shear zone initiation
has gradually migrated northwards. It is probable that the
shear zones, similar in their motion to the North Anato-
lian shear zone, were also formed at the Andrysov and
Arkhangelsky ridges separating the western and eastern
Black Sea basins. Somewhat later there was regional shear-

ing along the mountain ridges of the Southeast Caucasus
[Kopp, Kurdin, 1980], and only after that there was formed
the regional Crimea-Caucasus-Kopetdagh right-lateral
strike-slip fault zone (see Fig. 11), with the major Pliocene -
Quaternary movements occurred thereon [Patina et al.,
2017]. Active deformation processes are still taking place in
the Caucasus and adjacent regions. In particular, intensive

(a) Late Pleistocene — present time
)

Black Sea

Mediterranean Sea

Black Sea

Anatolian Peninsula

Fig. 19. A scheme of the post-Late Eocene tectonic evolution of the Anatolian-Balkan region and adjacent areas (after [Faccenna et
al., 2006]).

Gray arrows show the directions of plate motions; blue filled arrows show the directions of compression, blue empty arrows show the
directions of extension in some key regions. The dotted line is an approximate line of the slab collapse; yellow color shows an approxi-
mate location of the region, under which the lithospheric mantle fragment has collapsed.
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deformations are now undergone by the strata filling the
Tuapse trough near the coast [Almendinger et al,, 2011].

The recent plate tectonic configuration is characterized
by the following features (see Fig. 7; Fig. 20).

The "buffer" zone between the large Eurasian, African
and Arabian plates contains the Anatolian microplate, which
moves westward along the North Anatolian fault zone. This
fault zone is a right-lateral strike-slip fault system extend-
ing 1400 km from the Karliova triple junction to the Aegean
Sea; it then diverges into several faults. The GPS and SLR
observations show that the present-day North Anatolian
fault zone accommodates almost the entire strike-slip com-
ponent (22 mm/yr) in the mutual movements of the Anato-
lian and Eurasian plates [McClusky et al., 2000]. In view of
D. Kalafat [Kalafat, 2017], only a small part of the near-me-
ridional pressure caused by the movement of the African
and Arabian plates is transferred through the Pontides to
the Black Sea block, which seems to experience the near-
meridional shortening (contraction) at a rate of ~1 mm/yr.
Internal deformations of the central areas of the Anatolian
microplate occur at a rate less than 2 mm/yr, and it itself
as a rigid block moves counterclockwise around the Euler
pole located near the Nile Delta. The southern block of the
Aegean Sea moves coherently with the Anatolian micro-
plate towards the Hellenic arc but at a rate higher than that
of the central areas of the Anatolian microplate (30 mm/yr
against 20 mm/yr) [McClusky et al., 2000; Le Pichon et
al,, 1995; Kahle et al., 1999]. The difference in velocities is

compensated by the extension in the western part of the
Anatolian Peninsular. High-velocity movements and exten-
sion intensity in the southern Aegean block are thought
to be related to the Hellenic trench rollback [Le Pichon,
Angelier, 1979; Gautier et al., 1999; Wortel, Spakman, 2000;
Jolivet, Faccenna, 2000; Jolivet, 2001].

The northern part of the Caucasus region exhibits a fan-
like horizontal velocity vector pattern [Milyukov etal., 2022]
reflecting the counterclockwise rotation of the northern
limb of the North Azov flexural fault zone and thus the re-
cent strike-slip motions (Fig. 21). The GC and the Kuban
trough undergo transverse compression at a rate of up
to 1 mm/yr; the Ciscaucasia is dominated by strike-slip
motions.

According to [Milyukov et al., 2015], a typical aspect
of the present-day velocity field of the western segment
of the GC and North Ciscaucasia is their coherent north-
northwestward motion at a rate of 27-28 mm/yr (see
Fig. 7). In the same direction, though at a somewhat lower
rate (24-25 mm/yr), occurs also the displacement of the
East European platform segment of Eurasia. The mountain
structure in the westernmost segment of the GC under-
goes longitudinal compression. A large block-like moun-
tain structure in the western GC east of the Tuapse fault
zone, however, undergoes lateral compression [Milyukov
et al.,, 2022]. As this takes place, the southerly slope of the
western segment of the GC is deformed more intensively
than the areas adjacent to Ciscaucasia (Fig. 21).

60° E

Fig. 20. A scheme of recent plate motions in the Black Sea-Balkan-Anatolian-Caspian megaregion based on the GPS data (after [Kalafat,

2017]).
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Fig. 21. A scheme of horizontal instantaneous velocity vectors in different parts of the western segment of the Greater Caucasus, West
Ciscaucasia and platform-style structures located further north (GNSS station locations and velocity vectors from [Milyukov et al.,

2022]).

Regional basic GNSS stations: CHER - Cherkessk, KISL - Kislovodsk, KOCH - Kochubeevskoe, MARP - Mariupol, STVR - Stavropol, RSTD -
Rostov-on-Don-1, ZECK - Zelenchukskaya, 61RO - Rostov-on-Don-2. Regional GNSS stations: AROP - Arkhipo-Osipovka, AZOV - Azov,
KDAR - Krasnodar-2, KLOM - Shakhty, MKOP - Maikop, PKRV - Pokrovskoe, SLSK - Salsk, SMKR - Semikarakorsk, VLGD - Volgodonsk,
23GE - Gelendzhik, 23KR - Krasnodar-1, 23S2 - Sochi, 23TI - Tikhoretsk, 23TE - Temryuk, 23TU - Tuapse, 61KS - Krasny Sulin.

The following may be noted with regard to the present-
day vertical motions in the GC as a whole. The GPS obser-
vations show that the Ciscaucasia plains and foothills are
characterized by vertical instantaneous velocities of 2.49
+2.20 (Vladikavkaz station), 2.89+1.70 (Zelenchukskaya
station) and 3.55%1.53 (Kislovodsk station) mm/yr, which
increase to 4.36+0.70 mm/yr in the Greater Caucasus Moun-
tains (Terskol station) [Milyukov et al., 2015]. At a constant
uplift velocity of about 4 mm/yr over the last 2 Ma, the GC
could undergo 8 km uplift.

6. KUBAN TROUGH AS A PERICRATONIC BASIN
TRANSFORMED INTO A PIEDMONT TROUGH
NOT EARLIER THAN THE PLEISTOCENE
As far back as a hundred years ago, the founders of do-
mestic geology proposed to consider the GC orogen and
the Ciscaucasia troughs to the north of it as a paragenetic
connection between the orogen and the trough filled with

eroded orogenic-type deposits [Arkhangelsky, 1923, 1927,
1941; Arkhangelsky, Shatsky, 1933; Arkhangelsky et al,,
1937]. These views were further developed by M.V. Mura-
tov [Muratov, 1955, 1972], reflected almost unchanged in
[Milanovsky, Khain, 1963; Milanovsky, 1968; Khain, 1984],
and have survived to the present day [Popov et al., 2009;
Nikishin et al., 2010; Popkov, 2010; Beluzhenko, 2011;
Popov, Patina, 2023]. All these and other numerous publi-
cations interpret the Ciscaucasia trough system as a sys-
tem of piedmont basins paragenetically connected with
the GC mountain structure and predominantly filled with
sediment eroded from the structural and compositional
complexes of the GC. The beginning of the GC orogenic up-
lift is there with assigned to the Oligocene or Miocene.

By contrast, since about 2010, the western literature
has started to deal with the materials testifying to the fact
that the GC had become a high-mountain structure and a
tectonic dominant of the Black Sea region not earlier than
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the end of the Miocene. Thus, the low-temperature ther-
mochronometry data were collected and published show-
ing an abrupt increase in the rate of the Pliocene exhuma-
tion of the central segment of the GC [Avdeev, Niemi, 2011].
In [Vincent et al., 2013], there were published analysis re-
sults for mineralogical composition of the sandstones from
the Cenozoic strata of the northern Black Sea region, which
do not have evidence of the Caucasus Mountains erosion in
clastic rocks from the Lower Miocene and younger strata
of Ciscaucasia.

However, the Russian geological literature still lacks the
research evidence and evidence-based conclusions, which
are contrary to its generally accepted idea that the Cis-
caucasia troughs are the Cenozoic piedmont troughs, pre-
dominantly filled with sediment eroded from the Caucasus
orogen whose uplift started as early as the Oligocene or
Miocene. These views, typical of domestic geology, have
proven to be very tenacious regardless of newly acquired
data or apparent orographic inconsistences between the
GC and Ciscaucasia troughs, since they are considered as a
dynamic pair - an orogen and its piedmont trough. Theo-
retically, if the piedmont trough is formed due to thrusting/
orogenic overthrusting on the margin of the platform, then
the areas of the maximum thickness of sediments, accu-
mulated in the piedmont trough, should be located against
the highest and widest parts of the orogen. From this it
follows that the deepest parts of the Ciscaucasia trough
should have been located against the most mountainous
central part of the GC over 5 km high. However, the GC -
Ciscaucasia pair is exactly the opposite of that. Against the
central segment of the GC, in Ciscaucasia lies a relatively up-
lifted block (Stavropol uplift), and the deepest parts of the
Kuban trough are located against the westernmost parts
of the western segment of the GC somewhat over 0.5 km
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high. Further west, the Indol-Kuban trough in its Crimean
part is only traced up to the central areas of the Crimea
where it ends/pitches out, though the Crimean Mountains
are continuing/stretching almost another 100 km west-
wards.

The last decade provided the availability of high-reso-
lution seismic profiling data on the internal structure of the
Ciscaucasia troughs. Seismic records revealed numerous
details that give information about the sediment flow di-
rections. These are primarily the buried scarps and their
associated clinoforms, which are the relics of paleodeltas -
consedimentary structures of clastic sediment transport
from the erosion and transit areas to a wide shelf. Besides,
the high-resolution seismic profiling data clearly show the
erosion surfaces (different-order erosional boundaries)
and paleoincisions, and other considementary structural
forms. The analysis of numerous data on the West Cis-
caucasia shows that all Oligocene to Pliocene clinoform
bodies and cross-strata concentrated therein are oriented
primarily south and less often southwest or southeast,
which testifies to a lateral increase in the cross-sectional
area only from the side of the East European and Scythian
platforms [Kripinevich et al., 1989; Popov et al., 2010;
Babina et al., 2022; Polina et al., 2023; Kolodyazhny et al.,
20244, 2024b, 2024c; Patina et al., 20244a, 2024b; Post-
nikova et al., 2024; Dantsova et al., 2024]. An example
of such seismostratigraphic data is presented in Fig. 22.
Therewith the Cenozoic strata of the Kuban trough have
not shown any clinoform structures oriented north, north-
east or northwest.

The clinoform complexes of the West Ciscaucasia are
traced up to the upper stratigraphic levels of the Pliocene -
Cimmerian [Dantsova et al.,, 2024] and even up to those of
the Pliocene (Cimmerian) and Quaternary (Kuyalnitsky/

N

—
25725 26950 28175 29400 30625 31850 33075 34300 SRCX

1471 1569 1667 1765 1863  19€ 2059 2157 2255 2353 2451 2549 2647 2745 CDP

1000

1100

1200

1300

1400

Fig. 22. Seismic profile FR0O50805, illustrating the internal structure of seismocomplexes of the West Ciscaucasia.
The clinoforms showing the sediment flow direction in the West Kuban trough from the side of the East European Platform up to the
Cimmerian are highlighted by the blue lines (after [Dantsova et al., 2024]). See Fig. 7 for the profile location.
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Gelasian) [Popov et al., 2010; Kolodyazhny et al., 2024b],
whose lower age limit is 2.6 Ma. As for younger strata, the
resolution of seismic models drops drastically for objec-
tive reasons and does not contribute to reliable identifica-
tion of clinoforms and other seismostratigraphic markers,
which would allow determining the sediment flow di-
rections.

Besides the seismostratigraphic methods, the changes
in source areas and sediment flow directions can also be
determined with the analysis of U-Pb dating results for
detrital zircons (dZr) from clastic rocks. In particular, sub-
stantiating changes in the source areas of material which
could have filled the Ciscaucasia troughs including the
Kuban trough, may involve the U-Pb dating results for dZr,
extracted from the sandy rocks of the Late Miocene, Pliocene
and Quaternary sedimentary strata filling this trough.

In the West Ciscaucasia, the source areas located on the
East European platform (i.e., on the northern basin side)
and in the GC orogen (i.e., on the southern basin side) differ
significantly in their geochronological characteristics. The
GC and the Crimean Mountains ("southern" source areas)
have widely distributed Jurassic magmatic formations -
potential primary sources of the dZr grains with Juras-
sic ages of ~168-185 Ma. The "northern" source areas
do not have so young crystalline complexes [Kuznetsov,
Romanyuk, 2021]. The analysis of the pilot data accumu-
lated to date [Kuznetsov et al., 2024a] has already shown
the lack of abundance of the Jurassic dZr grains in sandy
rocks of the pre-Pliocene part of the Upper Mesozoic-Ceno-
zoic section of the Indol-Kuban trough. Statistically signifi-
cant populations of the Jurassic dZr were found in sands
from the strata not older than the Pliocene - Pleistocene
boundary age [Romanyuk, Kuznetsov, 2024; Shalaeva et
al,, 2024].

Thus, the pilot study did not reveal the provenance sig-
nal of the GC in the studied clastic rocks of the West Cis-
caucasia (Kuban trough), which participate in the structure
of the strata that are older than the Pliocene. Further thor-
ough study of the clastics participating in the structural
cross-sections of the post-Pliocene strata with reliable and
detailed biostratigraphy will yield more precise temporal
boundaries that mark the beginning of the eroded sedi-
ment transport from the GC complexes to different seg-
ments of Ciscaucasia. This will make it possible to differen-
tiate between temporal boundaries at which different GC
segments began to undergo rapid uplift and erosion.

Note that the phenomenon of a small amount of the GC
eroded sediments in the West Ciscaucasia troughs has re-
cently been explained by gravitational collapse of the GC
orogen and by tectonic erosion [Kolodyazhny et al., 20244,
2024b]. The origin of the rare Oligocene - Miocene olis-
tostrome complexes in Ciscaucasia has also been given a
new explanation. The Cenozoic Ciscaucasia was a part of
the northern areas of the Eastern Paratethys - a complex
system of intracontinental seas, connected to each other
by narrow straits and periodically isolated from the Global
Ocean, which caused the catastrophic sea-level changes.
Marine regressions occurred during an isolated sea-level

drop had caused the drying-up of vast shelf areas. Marine
regressions were associated with the occurrence of ero-
sion in previously formed strata and with the formation of
unconformities complicated by deep-incision systems. The
incisions accumulated chaotically stratified fill complexes
(formed gravity facies). One of such significant regression
events is the Early Oligocene (Rupelian) Solenovian cri-
sis (~29 Ma), when a 400-500 m decrease in the relative
sea level gave rise to the formation of coarse-clastic olis-
tostrome strata. The results of the regional-geological and
geophysical data analysis showed evidence of the occur-
rence of the Solenovian crisis in Ciscaucasia, North Caspian
and Kazakhstan [Patina et al.,, 20244, 2024b]. The effects
of the Solenovian crisis were also discovered in the Black
Sea coast area. Thus, the Karaburun outcrop (Istanbul,
Turkey) displays the erosional Eocene surface overlain by
the rocks of coarse-clastic terrigenous facies and by the
mudflow-forming deposits, which biostratigraphically date
back to the age of the Solenovian crisis [Simmons et al,,
2020]. The Getic basin (Romania) Solenovian cross-sec-
tions show the conglomerates and other coarse-clastic for-
mations [Roban, Melinte, 2005]. Based on the seismostrati-
graphic and drilling data, the erosional surfaces across
the Oligocene basement were found on the Odessa shelf
and on the Romania shelf of the Back Sea [Dinu etal., 2005;
Munteanu et al., 2014].

Generally, the already accumulated seismostratigrapic
data [Kripinevich et al., 1989; Popov et al., 2010; Polina et
al., 2023; Kolodyazhny et al., 2024a, 2024b, 2024c], pa-
leogeographic reconstructions [Postnikova et al., 2024;
Patina et al., 2024a, 2024b] and U-Pb dating results for
dZr grains from the heterochronous strata of the Kuban
trough [Kuznetsov et al., 2023, 2024a, 2024b; Romanyuk,
Kuznetsov, 2024; Shalaeva et al., 2024] strongly suggest
that the pre-Pliocene detrital material was transported to
the Kuban trough not from the side of the GC, but from vast
feeding provinces located within the East European and
Scythian platforms. Therefore, the strata filling the Kuban
trough and assigned to the entire Oligocene - Pliocene are
neither upper nor lower orogenic molasse since they do not
contain the deposits eroded from the GC orogen. This im-
plies that all Cenozoic depressions of the West Ciscaucasia
up until a certain point of time were not piedmont troughs,
dynamically and paragenetically connected with the uplift
of the GC, which, as a high-elevation and intensively eroded
orogen, did not exist at least untill the end of the Pliocene.
The strata, filling the depressions of the West Ciscaucasia,
formed in a wide shelf on the southern margin of the East
European part of North Eurasia through deposition of sedi-
ment eroded from this continent, i.e. the pre-Pleistocene
strata of the West Ciscaucasia formed in the continental
margin sedimentary basins. The latest publications on the
palegeographic reconstructions of the Eastern Paratethys,
refined with regard to the newest data, show Ciscaucasia
as a part of the Eastern Paratethys Sea basin without the
Caucasian land up until the Pliocene [Postnikova et al.,
2024; Patina et al., 20244, 2024b]. And only after a rapid
uplift of the GC, not earlier than the end of the Pliocene,
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Fig. 23. Conceptual paleoprofiles, intersecting the western segment of the Greater Caucasus in the near-meridional direction and
illustrating the selected episodes of the Cenozoic paleogeographic/tectonic evolution of this region (vertical scale and sea level are
conventional).

Blue font marked the time and paleogeographic/tectonic situation. I - Cimmerian, Hercynian and Cadomian complexes of the het-
erogeneous structural basement of the Greater Caucasus orogen; 2 - sandy bodies of the orthoclinoform and clinoform complexes;
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3 - clayey formations of the foundation-shaped parts of clinoform complexes and the parts of sedimentary basin, remote from the clino-
form front; 4 - flysch formations formed in the zone of transition from the shelf areas of the Eastern Paratethys to the Eastern Black Sea
Basin; 5 - stratigraphic boundaries corresponding to the heterogeneous bottom formations (circled numbers): 1 - Danian; 2 - Lower
Solenovian transgressive; 3 - Upper Solenovian regressive; 4 - Middle Sarmatian transgressive; 5 - Upper Sarmatian-Meotian regres-
sive; 6 - Cimmerian transgressive); 6 - facies transition between clayey (symbol 3) and flysch (symbol 4) formations; 7 - (paleo)
topographic surface; 8 - sea level; 9 - projection of erosive thalweg incisions (clastic sediment transport channels); 10 - system of faults
of the Caucasian segment of the Crimea-Caucasus-Kopetdagh transpressional shear zone with a large-amplitude right-lateral displace-
ment; 11 - tectonogravitational detachments and displacement directions thereon.

sedimentary basins of Ciscaucasia were transformed into
piedmont troughs.

7. CONCLUSION

We propose the following interpretation of the key mo-
ments in the geological history of the GC region and Cis-
caucasia (Fig. 23):

- the Late Neoproterozoic and Paleozoic lithosphere
of the Tethys Ocean, separating the Arct-Laurasian and
Godwanian continental masses, subducted beneath the
southern (southwestern in present-day coordinate sys-
tem) continental margins of the Baltica paleocontinent -
Precambrian basement of the East European platform. The
result implies the margin growth due to the accretion of
terranes of Hanseatic, Cadomia-Avalon and Galatian ter-
ranes. These formations compose the heterogeneous base-
ment of the Scythian platform that includes the GC and
Ciscaucasia;

- the Tethys Ocean underwent numerous reconstruc-
tions and transformations during the Mesozoic. In partic-
ular, a band of the peri-Gondwana terranes separated it
into the Paleo-Tethys and Neo-Tethys oceans, which expe-
rienced the formation of new volcanic arcs and back-arc ba-
sins, large crustal block motion along the shear zones, ter-
rane amalgamation, failure and closure of the oceanic-crust
basins, the traces of which still remain as different-rank
oceanic sutures in the Black Sea-Balkan-Anatolian-Caspian
megaregion. One of such events was Black Sea basin for-
mation during the Late Cretaceous - Early Cenozoic;

- in response to convergence between the Arct-Laura-
sian and Gondwanian continental masses during the Ce-
nozoic, the Black Sea-Balkan-Anatolian-Caspian megare-
gion became the northern part of the vast epicontinental
Eastern Parathetys basin - a complex system of sub-basins
connected by narrow straits. The area of the present-day
GC and Ciscaucasia was a part of the Eastern Parathetys
region characterized by the shelf to a flysch trough tran-
sition and to the East Black Sea basin transition further
south (Fig. 23, a). The shelf of the Eastern Parathetys was
a place of confluence of large rivers, which drained the
East European and Scythian platforms and transported
huge quantities of terrigenous material. The sediment ac-
cumulation in the area of the future GC and Ciscaucasia oc-
curred due to the lateral increase in the cross-sectional
area through the sediment transported only from the side
of the East European and Scythian platforms. Such mode
existed until the end of the Pliocene. Due to transgressive
to regressive turnaround in the Eastern Parathetys, the
clinoform scarps changed their spatiotemporal location,

moving north during transgressions and south during re-
gressions (Fig. 23, b-e);

- approximately 12 Ma the front fragment of the Arabian
slab collapsed into the mantle, and about 3-2 Ma ago there
was an episode of delamination of the lithospheric frag-
ment beneath the central part of the Caucasus region. This
caused rapid isostatic uplifts of the Turkish-Iranian plateau
at first, then those of the central areas in the Lesser and
Greater Caucasus later on. Catastrophic tectonic events
in the mantle were accompanied by pulses of volcanism,
which migrated from the Bitlis suture on the Anatolian
Peninsular (~11 Ma) to the Caucasus region (~3-2 Ma and
until now);

- lithospheric delamination beneath the Anatolian and
Caucasus regions significantly weakened the total litho-
spheric strength and initiated the formation of new large
transcrustal fault zones and rapid reorganization of tectonic
movements over the entire Black Sea-Balkan-Anatolian-
Caspian megaregion. This implies, first of all, the separa-
tion of the new Anatolian microplate, which started mov-
ing west along the Anatolian strike-slip fault system. On
the north the Anatolian microplate was separated from the
Black Sea block by the North Anatolian right-lateral shear
zone. Fault zones with similar geodynamic modes were
also formed in the Black Sea block and in the Caucasus
region. These include, among others, the regional Crimea-
Caucasus-Kopetdagh transpressional shear zone with a
large-amplitude right-lateral displacement, a part of which
separates the block of the Black Sea and Scythian plate.
Major large-amplitude right-lateral strike-slip movements
and near-fault deformations along this shear zone occurred
in the Pliocene - Quaternary (Fig. 23, g);

- the rapid isostatic uplift of the central Caucasus region
in the Pliocene(?) - Quaternary and near-fault deforma-
tions along the Caucasus segment of the Crimea-Caucasus-
Kopetdagh shear zone transformed the part of the region,
in which the GC orogeny is located nowadays, into tectoni-
cally conditioned geomorphological dominant of the North
Black Sea region. During the gravitational collapse and tec-
tonic erosion of the GC orogen, highly deformed complexes
of the heterogeneous Hercynian basement of the Scythian
platform cropped out at the erosional surface in the cen-
tral, most uplifted parts of the GC, and the Upper Mesozoic-
Cenozoic platform cover strata slipped north along the
tectono-gravitational detachment system and piled up in
the Kuban trough (Fig. 23, g);

- in response to a rapid uplift of the GC orogen at the
very end of the Pliocene - Quaternary, a part of the Eastern
Parathetys became a sub-basin (Indol-Kuban and Tersk-
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Caspian troughs) that transformed from the pericratonic
basin into the piedmont trough, since it began to accumu-
late sediment transported from the GC.
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