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ABSTRACT. The study of diverse mantle-derived igneous complexes is important for interpreting geodynamic events,
ore deposits formation mechanisms, and ore-forming fluid sources. Modern studies of orogenic gold deposits in the
Precambrian metamorphosed terranes emphasize the importance of subduction-enriched lithospheric mantle in the ore
formation processes. Orogenic gold mineralization in the Nimnyr terrane of the Aldan-Stanovoy shield is confined to the
outcrops of mafic granulites from the Medvedev complex, intruded and metamorphosed 1.92-1.90 Ga ago at the final
stage of the collision process. The Medvedev complex and ore bodies are intersected by non-metamorphosed dolerites of
the 1.87 Ga Timpton-Gynym and 1.75 Ga Timpton-Algamai dike belts formed under conditions of post-collisional and in-
tracontinental extension. The mantle-derived igneous complexes, presenting in a variety of geodynamic settings and ore
mineral formation stages, make it possible to identify compositional and evolutionary features of the mantle in connec-
tion with ore formation processes. To do this, there were determined rock-forming oxide and trace element concentra-
tions in pre-ore mafic granulites of the Medvedev complex and post-ore dolerites. Based on the geochemical data, there
was a reconstruction of rock and mantle source type formation conditions. It was found that the rocks of the Medvedev
complex are plume-derived. Doleritic melt formation was contributed to by the subduction-enriched lithospheric mantle
material. There is a possility of different degrees of source melting and interaction of plume with the enriched lithospheric
mantle at the final stage of the collision process. The obtained results can be used to refine the geodynamic models of gold
mineralization formation in the central part of the Aldan-Stanovoy shield. There has been proposed one of the standard
models.
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1. INTRODUCTION

The Paleoproterozoic accretionary and collisional struc-
tures (2.2-1.6 Ga) are characterized by the combination of
pyrite-polymetallic, gold and copper-nickel-platinum-me-
tallic ores [Turchenko, 2021]. The exposed Nimnyr terrane
within the Aldan-Stanovoy Shield (Fig. 1) is no exception.
The Precambrian geological complex terranes interpreted
as the root zones of the Paleoproterozoic orogenic belt
[Smelov, Timofeev, 2003] are known for the Precambrian
metamorphogenic gold [Syasko et al., 2006] and skarn de-
posit with high Fe, Mn, Cu, and Co concentrations [Parfenov,
Kuzmin, 2001]. The placer gold deposits often reveal a plat-
inum-sperrylite association. Thus, the Unga-Nimgerkan
placer deposits are characterized by the presence of rounded
sperrylite grains, often with a thin surface coating of na-
tive platinum, which contain small kaolinite, pyrophyllite,
endellite, phlogopite, ore mineral and quartz inclusions.
The studies of structural features and mineral inclusions
showed that such intergrowths were formed during ther-
mal metamorphic decomposition of sperrylite at tempera-
tures between 400 and 600 °C with participation of hy-
droxyl-containing minerals [Okrugin, 2000]. The *°Pt-*He
age of three sperrylite grains varies from 1.70 to 1.95 Ga
[Okrugin et al., 2018, 2020].

The study was aimed at forecasting potential indige-
nous sources of gold and platinum which form placer and

primary deposits of the area. This requires the develop-
ment of objective mineralogical-geochemical criteria for
certain parameters of formation conditions for deep-seated
sources of parent ore. The tasks included: 1) determina-
tion of chemical composition and content of admixture
elements in metabasites and dolerites; 2) identification
and characterization of rocks based on the petrographic
and geochemical data; 3) analysis of distribution patterns
for chemical elements and geochemical indicator ratios of
geodynamical settings and sources of the substance; 4) ore
mineralization formation model refinement.

2. GEOLOGICAL STRUCTURE OF THE STUDY AREA

The outcrops studied are located within the Nimnyr
granulite-orthogneissic terrane (Fig. 1). The structural plan
of the terrane is determined by the widespread occurrence
of granite-gneiss domes. The largest of them - the Timpton
dome, - is located in the northern part of the terrane [Duk
etal., 1986]. The domal cores are composed of 3.57-1.93 Ga
orthogneisses represented by granite-, charnokite- and en-
derbite-gneisses with amphibolite bodies [Parfenov, Kuz-
min, 2001]. The shoulders of the domes are composed of
the paragneissic complex represented by two associations
of rocks. The first association (Kurumkan sequence) in-
cludes quartzites and high-alumina gneisses, protolithical-
ly resulted from decomposition of the rocks with Nd-model

Russia

Fig. 1. Tectonic scheme of the Aldan-Stanovoy Shield (after [Parfenov, Kuzmin, 2001; Smelov, Timofeev, 2003]), showing the location

of the objects studied.

1 - distribution areas of ore-bearing metabasites and post-ore dolerites; 2 - paleocratonic terranes: WA - West Aldan, Uch - Uchur, Bt -
Batomga; 3 - terranes sandwiched between the margins of paleocratons: Nm - Nimnyr, St - Sutam, Tn - Tynda, Chg - Chogar; 4 - zones
of tectonic melange: am - Amga, kl - Kalar, tr - Tyrkanda; 5 - Seym thrust (Sm).
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Fig. 2. Geological sketch map of the Nimnyr terrane area: (a) - [Parfenov, Kuzmin, 2001]; (b) - [Velikoslavinskii et al., 2011], simplified.
Rock distribution areas: 1 - ore-bearing mafic rocks, 2 - sedimentary cover of the Siberian platform, 3 - complexes outside the Nimnyr
terrane, 4 - tonalite-trondhjemite orthogneisses (enderbite-gneisses) of the Western Aldan (a) and Timpton (b) complexes, granite-
gneisses, 5 - biotite * garnet, cordierite, sillimanite plagiogneisses, bipyroxene- and diopside-hornblende crystalline schists of the
Kurumkan and other sequences, 6 - hornblende * biotite, diopside, hypersthene plagiogneisses, hypersthene-biotite plagiogneisses
and crystalline schists with rare interlayers of calciphyres of the Fedorovka sequence, 7 - faults, 8 - thrusts.
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age of 3.06-2.85 Ga [Parfenov, Kuzmin, 2001], as well as
calcareous and ferruginous quartzite lenses [Rundqvist,
Mitrofanov, 1988; Duk et al., 1986]. The second associa-
tion (Fedorovka sequence) is represented by 2006 Ma am-
phibole, biotite-amphibole, diopside-amphibole and bipy-
roxene-amphibole plagiogneisses [Velikoslavinsky et al.,
2006], less often by schists with interlayers and lenses of
diopside and phlogopite-diopside rocks and calciphyres
[Parfenov, Kuzmin, 2001] (Fig. 2).

Gold mineralization in the terrane is localized in ex-
tended metabasite bodies of the Medvedev complex, intrud-
ing sub-conformably the orthogneissic complex and meta-
morphic rocks of the Kurumkan and Fedorovka sequences
and constituting combined dikes with 1920 Ma alaskite
granites [Shcherbak, Bibikova, 1984; Kravchenko et al.,,
2009]. The bodies are located in the interdomal synforms
(Fig. 3, a). The degree of metamorphism experienced by
metabasites and host rocks corresponds to the granulite
facies. Among the rocks of the Medvedev complex, the
most common are bipyroxene-amphibole and pyroxene-

amphibole crystalline schists; there occur olivine- and py-
roxene-containing amphibolites. At some outcrops, the
bodies are deformed by asymmetric folds with steep hing-
es which occur during the shear motions. Where the meta-
morphic rocks show signs of bending, folding and second-
ary schistosity in association with sub-conformable quartz
veins and pyroxene and amphibole bands and lenses, the
crystalline schists contain vein-disseminated metamor-
phogenic-hydrothermal sulfide-arsenide ores presenting
in the Pinigin deposit and some ore fields (Fig. 3, a, b).
[t suggests the formation of the complex and its related
mineralization at the final collisional stage [Smelov et al,,
2006; Kravchenko et al., 2010]. The *°Ar/*Ar age of meta-
morphism of the rocks from the Medvedev complex, deter-
mined based on the amphiboles from the bipyroxene-am-
phibole crystalline schist and pyroxene-plagioclase-quartz
rock in the ore interval, was 1903-1908 Ma [Smelov et al,,
2006].

The formation temperature estimation values for bi-
pyroxene and amphibole-plagioclase associations of the
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Fig. 3. Geological sketch-maps of outcrops of metabasites of the Medvedevsky complex compiled on the basis of [Kiselev et al., 1988].

(a) - a fragment of the Leglier ore cluster; (b) - a fragment of the Kur section of the Pinigin deposit. I - AR-PR metamorphic com-
plexes - biotite-hypersthene and garnet-biotite plagiogneisses of the orthogneissic complex and the Kurumkan sequence; 2-6 - PR
metamorphic complexes: 2 - plagiogneisses and crystalline schists of the Fedorovka sequence, 3-6 - PR intrusions: 3 - bodies of
rocks of the Medvedev complex, 4 - granites and granite-gneisses, 5 - plagiogranitoids, 6 - dolerites (on the basis of [State Geological
Map...,, 1962]); 7 - faults; 8 - Quaternary deposits; 9 - areas of orogenic gold mineralization: B - Brivas and U - Unga-Nimgerkan of the
Brivas ore field, K - Kur and P - Pritrassovy of the Verkhnelyubkakai ore field.
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crystalline schists of the deposits using different geother-
mometers were 750-850 °C; pressure estimation value
based on the amphibole composition was 5-7 kbar [Krav-
chenko et al., 2010]. Based on the fluid inclusions in pla-
gioclases and pyroxenes, there were obtained the effects
of gas emission corresponding to high-temperature (780-
480 °C) and moderate-temperature (450-180 °C) ore-form-
ing fluids of the metamorphic and later stages [Sharova,
2006].

The area of occurrence of metabasites of the Medvedev
complex includes a zone of intersecting doleritic dikes
(Fig. 3), widespread within the Aldan Shield and consti-
tuting the E-NE- and NW-extended dike belts [Okrugin
et al, 2000, 2019] - Timpton-Gynym (TG) and Timpton-
Algamay (TA), with precise U-Pb ages of 1869+2 and 1754
+5-1759+4 Ma [Ernst et al,, 2016]. The metabasites of the
Medvedev complex and ore bodies are intersected by dol-
erites (Fig. 3, b). The doleritic dikes are steeply dipping
(70-90°), brought into direct, sharply defined transcurrent
contacts, extend a few hundred meters to 12-15 km, and
vary in thickness from a few tens of meters to 200-300 m.
They are unsusceptible to metamorphic transformations,
fresh-appearing, and consist of dark-gray and black massive
fine- and medium-grained rocks with fine-grained chilled
endocontact zones. The rocks have ophitic and gabbro-
ophitic texture; at the endocontacts, they are characterized
by microlithic texture. The primary minerals are plagio-
clase and clinopyroxene, the secondary minerals are K-feld-
spar, hypersthene, quartz, titanomagnetite, and apatite.
There are dioritic dikes characterized by a high content of
interstitial quartz-feldspathic micropegmatite and the oc-
currence of hypersthene. The 1869 Ma dikes were intruded
at the post-collisional extension stage, and the 1750 Ma
dikes reflect the intraconinental extension stage [Donskaya,
Gladkochub, 2021; Gladkochub et al,, 2022].

The belonging of metabasites and dolerites to the pre-
ore and post-ore magmatic rocks of similar material com-
position makes them actual for investigation of miner-
alogical-geochemical features indicating ore genesis pro-
cesses.

3. METHODS AND MATERIALS

On the Pinigin deposit area, eastward to the Sivaki and
Korot rivers, westward to the Khair and Khatymi rivers and
northward near the Orto-Sala and Seligdar rivers, there
were collected 55 rock samples from the Medvedev com-
plex and more than 40 dolerite samples from 8 dikes of the
Timpton-Gynym and Timpton-Algamay belts.

Optical properties of minerals and rocks were studied
using Meiji Techno 9430L, Olympus Bx50 and Polam-P-211
microscopes. 75 samples were used to determine chemical
composition and microelements including REE. The con-
tents of rock-forming oxides were determined by silicate
analysis using wet chemical methods at the department of
physical and chemical methods of analysis of DPMGI SB
RAS (Yakutsk). The rare-earth and rare element contents
were analyzed by LA-ICP-MS at the Shared Research Facili-
ties of Multi-Element and Isotope Researches of SB RAS

(IGM SB RAS, Novosibirsk). The analytical data were pro-
cessed using comparative characteristics and discriminant
and petrogenetic diagrams drawn by different authors.

4. RESULTS

4.1. Rock composition in the Medvedev complex

Five groups of rocks within the Medvedev complex can
be distinguished according to the petrographic data. The
firstand the second groups are represented by hornblende-
rich amphibolites which also contain some amounts of oli-
vine and pyroxene. Individual samples include spinel and
magnetite. A characteristic distinction of the second group
of amphibolites is the presence of a small amount of pla-
gioclase. The third-fifth groups of rocks are dominated by
pyroxene-amphibole and bipyroxene-amphibole crystal-
line schists. Some of the schists contain rare ore minerals,
titanite, apatite, biotite, and quartz. The fourth and the
fifth groups are characterized by the presence of ore min-
erals and pyroxene. All samples of the fifths group contain
clinopyroxene. Gold mineralization is confined to the last
two groups. The rocks of the groups in their chemical com-
position (Table 1; Suppl. 1 on the article page online) are
similar to: 1 - peridotites, pyroxenites and hornblendites;
2 - pycrodolerites; 3 - high- and moderate-Mg dolerites;
4 - low-Mg dolerites; 5 - (high-ferriferous) dolerites.

The non-metamorphosed post-ore doleritic dikes possess
homogeneous structures with no visible signs of differen-
tiation. However, they differ from each other in chemical
composition (Table 1; Suppl. 1 on the article page online).
An important discriminant feature is Ti- and P-contents re-
lative to alkalinity and SiO,-content [Okrugin et al., 2000].
According to this, the dikes are divided into two groups -
Ti- (TiO, more than 1.5 wt. %) and low-Ti (TiO, less 1.5 wt. %)
[Okrugin et al., 2000, 2019].

A feature common to the rocks the Medvedev com-
plex or dolerites is that they belong to the normal range
of alkalinity and tholeiitic series (Fig. 4, a-c). In terms of
rock-forming oxide content, there is no overlap in composi-
tion between the metabasites of groups 1-3 and dolerites;
the metabasites of groups 4-5 are similar to Ti-dolerites
(Fig. 4, a-d). The points of low-Ti- and Ti-dolerites and NW-
and NE-trending belts in Fig. 4 coincide with each other,
i.e., there is no difference between these belts. Ti-dolerites
are characterized by a high content of PO, (0.2-0.5 wt. %);
a similar trend is also seen for the change in TiO, and P, 0,
contents depending on silica content in the rocks (Fig. 4, d).
Low-Ti dolerites with a high SiO, content show a gradual
increase in Ti- and P-contents while Ti-dolerites exhibit ab-
rupt rather than gradual decrease in the content of these
elements. This duality of titanium and phosphorus be-
havior may be attributed to fractional differentiation of
basite melts in deep-seated chambers. Thus, the dolerites
exhibit only geochemical (low-Ti and Ti) characteristics
which probably resulted from differentiation of basites in
the intermediate sources with no dependency on the age
of different-trending dike belts.

Spectral distribution of elements on the spider dia-
gram shows that the metabasites of groups 1-3 are similar

https://www.gt-crust.ru
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Table 1. Average chemical compositions (wt. %) and content of rare elements (ppm) in the rocks of the Medvedev complex and dolerites

Rocks of the Medvedev complex TG - dolerite belt TA - dolerite belt

Components
1 2 3 4 5 6 7 8 9

Sio, 44.45 44.00 44.82 46.78 48.82 53.55 48.48 52.24 53.46
Tio, 1.14 1.86 2.08 2.27 2.78 0.76 2.65 0.89 1.11
ALO, 7.50 8.96 12.16 12.73 13.34 16.80 13.57 14.54 14.72
Fe,0, 3.80 4.81 4.62 3.85 4.59 0.49 3.97 2.51 2.76
FeO 9.28 10.55 10.29 11.86 10.72 10.12 11.12 9.63 7.07
MnO 0.21 0.22 0.22 0.25 0.26 0.39 0.20 0.18 0.15
MgO 21.31 15.59 10.16 6.81 4.57 2.87 5.10 5.55 5.93
Ca0 8.95 10.01 11.16 11.04 9.64 8.86 8.07 9.21 9.31
Na,0 0.62 1.42 2.03 2.14 3.23 2.76 1.71 2.67 2.27
K,0 0.31 0.45 0.69 0.69 0.62 2.16 0.64 1.25 1.02
P,0, 0.12 0.13 0.20 0.20 0.31 0.18 0.52 0.12 0.15
H,0 1.43 0.76 0.56 0.23 0.62 - - - -
LOI 0.89 1.06 0.51 0.96 0.32 0.43 3.68 0.13 1.63
Total 100.01 99.81 99.50 99.81 99.80 99.37 99.71 98.92 99.56
La 9.63 14.62 19.87 20.05 21.05 34.32 36.79 20.40 25.16
Ce 22.82 38.69 51.00 46.99 46.07 74.69 80.13 40.42 50.12
Pr 3.03 4.75 7.67 6.48 6.20 9.47 9.30 4.75 6.19
Nd 13.37 21.21 33.16 28.07 27.56 41.41 38.87 19.76 25.85
Sm 3.47 5.50 7.20 7.10 7.17 7.27 7.27 3.63 4.75
Eu 0.95 1.45 2.15 2.02 2.18 1.92 2.10 1.07 1.32
Gd 3.45 5.54 6.44 7.30 7.82 7.25 7.37 3.76 4.67
Tb 0.51 0.84 0.89 1.12 1.18 0.97 1.15 0.58 0.65
Dy 3.03 491 4.82 6.68 7.43 5.86 6.20 3.59 3.90
Ho 0.58 0.94 0.90 1.32 1.52 1.08 1.33 0.73 0.77
Er 1.64 2.58 2.34 3.73 4.31 3.06 3.76 2.11 2.09
Tm 0.22 0.34 0.31 0.51 0.61 0.42 0.51 0.31 0.30
Yb 1.43 2.09 1.93 3.33 4.07 2.58 3.11 2.04 1.97
Lu 0.20 0.29 0.27 0.47 0.58 0.40 0.45 0.31 0.28
Rb 8.63 10.44 15.99 15.03 11.03 32.90 35.06 33.51 18.24
Sr 98.13 88.2 288.7 264.7 295.5 514.6 348.2 245.69 324.93
Y 15.37 23.86 22.28 33.97 40.26 31.45 35.71 20.11 20.99
Zr 80.33 102.0 124.81 123 199 222.08 232.9 117.2 139.5
Nb 7.08 12.47 15.62 15.05 17.96 12.02 14.51 5.52 8.19
Ba 73.6 100.7 331.7 214.3 226.3 730.47 518.5 455.51 367
Hf 2.15 2.62 3.34 3.45 5.08 5.31 5.61 3.24 3.60
Ta 0.43 0.58 0.79 0.96 1.08 0.70 0.86 0.39 0.50
Th 0.94 1.24 1.51 4.12 0.99 3.04 4.65 5.20 3.57
U 0.31 0.49 1.00 0.66 0.69 0.63 0.92 1.33 0.57
Cs 1.24 0.73 0.71 1.11 0.19 0.47 0.64 0.62 0.30
\4 240 289.4 347.8 368.4 366.3 402.0 368.0 248.0 278.0
Co 83.74 74.76 58.40 52.58 38.61 67.8 54.6 37.60 38.40
Cr 1958.8 1135 645.8 157.6 135.2 50.4 17.0 18.0 21.7
Ni 1007.8 588.8 260.38 108.2 71.77 54.6 73.0 76.0 62.3
Gd/Yb 2.41 2.65 3.34 2.19 1.92 2.81 2.37 1.84 2.37
Dy/Yb 211 2.34 2.50 2.01 1.82 2.27 1.99 1.75 1.98

Note. 1-5 - average compositions for groups of rocks of the Medvedev complex: 1-2 - amphibolites with MgO 29-18 and 18-12 %; 3-5 - crystalline
schists with MgO 12-8, 8-6 and 6-4 %. 6-7, 8-9 - average compositions of low-Ti and Ti-dolerites from the Timpton-Algamai and Timpton-Gynym dike
belts. * - rocks accompanying gold mineralization.
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Fig. 4. The most pronounced geochemical characteristics of rocks on the diagrams [Petrographic Code..., 2008; Nesbitt et al., 1979;

Meschede, 1986].

1-2 - points and fields of composition of rocks of the Medvedev complex by rock groups: 1 - first-third, 2 - fourth-fifth; 3-4 - points of
dolerite compositions: 3 - compositions of low-Ti dolerites from the NE- (a) and NW-trending (b) dike belts; 4 - the same applies for
Ti-dolerites; 5-6 - fields of low-Ti- (5) and Ti-dolerite (6) compositions. Normalization is done after [Sun, McDonough, 1989]. The line
on the AFM diagram is drawn after [Irvine, Baragar, 1971]. Discrimination characteristics are shown in red.

to enriched mid-ocean ridge basalts and those of groups
4-5- to intraplate ocean island basalts. Unlike the latter,
the dolerites are characterized by the presence of well-
defined negative Th-U, Nb-Ta, Zr-Hf, P and Ti anomalies
(Fig. 4, e). In the discriminant diagram, reflecting compo-
sitional features of rocks in different geodynamic settings,
most of the metabasite and dolerite composition points
fall into the fields corresponding to intraplate tholeiites,
combined with intraplate alkaline and arc volcano basalts
(Fig. 4, ).

Spectral distributions of heavy rare-earth elements are
different. It was found that REEs present relatively low con-

tents in metabasites of groups 1-3. With an increase in
A1203 content, there is an observable increase in the REE
spectral slope (Gd/Yb, Dy/Yb ratios in Table 1) and a change
of negative Eu anomalies to positive (Fig. 5, a). These fea-
tures can be indicative of the process of magmatic differ-
entiation with possible participation of plagioclase. The
calculation of rare-earth element contents during the melt-
ing of clinopyroxene-rich lherzolites [Lesnov, 2010] using
batch melting equation C,=C,/(D,+F(1-P)) [Zou, 2007]
shows that the REE contents similar to those for groups
1-3 can be obtained on 30, 10 and 1 % melting in these
rocks (Fig. 5, d).
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More gentle spectral slopes and high rare-earth ele-
ment contents were found in metabasites of groups 4-5
(Fig. 5, b). The calculation of rare-earth element contents
on melting of harzburgites [Lesnov, 2010] shows that the
REE distribution similar to that in groups 4 and 5 will most
likely be obtained by 1 and 10 % melting in these rocks
(Fig. 5, e). The calculations of the REE contents on melt-
ing of garnet lherzolites show other spectra, though high
heavy REE contents could be attributed to the presence of
garnet [Lesnov, 2012]. The negative and positive Eu anom-
alies are probably caused by the process of magmatic frac-
tionation.

Dolerites show HREE concentrations comparable to
those in metabasites but higher LREE concentrations (Fig. 5,
c). This can be related to the participation of an enriched
mantle source in the initial melt formation. There were de-
tected weak negative Eu anomalies. The low-Ti dolerites
exhibit a more gently sloping HREE distribution pattern
(Gd/Yb, Dy/YDb ratios in Table 1).

The influence of different degrees of melting of the
mantle sources on the rock compositions can be seen in
diagrams (Fig. 5, f, g). Flat HREE distribution patterns of
rocks in these diagrams are confined to the fields reflect-
ing a higher melting degree.
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100 1. 3

~
Q
—

Rock / Chondrite

(c)

La PrPm*Eu Tb Ho Tm Lu
Ce Nd Sm Gd Dy Er Yb

La PrPm*Eu Tb Ho Tm Lu
Ce Nd Sm Gd Dy Er Yb

T T T T T T T T T T T T T T

La Pr EuTb Ho Tm Lu
Ce Nd SmGd Dy Er

(d) 100 1 (e) 100 3
2 1 30 %
2 10730 %
8 10 %
x 0,
10 4 30 %
5101 N 10
S 10 % ] 1%
1 Clinopyroxene-rich ]
1 lherzolites 1% 1 Harzburgites
T T T T T T T T T T T
Ce Nd Sm Eu Yb Ce Nd Sm Eu Yb
(N 10 9) )
High pressure,
1 low-percentage melting
0IB+OPB array °
(targ® amc|)unt net)
id arl
£ of residual g '). N
Bw 1 »® S 17 °® °
Sl e ¢ o2 o e
i S °
MORB+OPB+IAB . %
small amoun
2¥r\?gsi(dual garnet) d e
[ Low pressure,
g high-percentage
melting
0 T . ,
Nb/Yb 44.5 48.5 52.5 56.5
0.1 T T Sio,
0.1 1 10 100

Fig. 5. Distribution of rare-earth elements and melting degrees of sources.

(a-c) - chondrite-normalized contents of rare earth elements after [Sun, McDonough, 1989]: 1-5 - for metabasites of the groups
considered; 6-7 - for low- and high-Ti dolerites; (d, e) - contents of rare earth elements calculated for batch melting of lherzolites and
harzburgites. The calculations were made using the parameters presented in [Johnson et al., 1990], 1 % melting is largely observed in
pyroxenes, 30 % melting - in spinel and olivine. Normalization was performed after [Sun, McDonough, 1989]; (f, g) - element ratios
reflecting source melting features: OIB - basalts of oceanic islands, OPB - oceanic plateaus, MORB - mid-oceanic ridge, IAB - island arcs
[Pearce et al,, 2021; Greenough, McDivitt, 2018]. See Fig. 4 for the legend.
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Fig. 6. Probable sources of the substance (diagrams after [Saunders et al., 1988; Pearce, 2008; Condie, 2005; Pearce et al., 2021]).
DMM - depleted mantle; RSC - recycled component; SDC - subduction component; OIB - oceanic island basalts; PM - primitive mantle;
SZLM - subduction zone lithospheric mantle; PH-L - melting trend of phlogopite and lherzolite; PX - pyroxenite melting trend, FM -
enriched mantle, GFD - depletion trend in granulite facies, M - SZLM magma, MA - asthenosphere, P - plume.

The analysis of the diagrams reflecting the source types
shows that the enrichment of metabasites and dolerites in
rare and rare-earth elements is of a different nature. The me-
tabasites are characterized by geochemical markers related
to non-subduction, probably plume component, and the
dolerites - by the markers related to subduction-enriched
lithospheric mantle (Fig. 6, a—e). During the initial melt for-
mation the protoliths of the rocks from the Medvedev com-
plex were presumably derived from different-degree man-
tle melting and plume-lithosphere interaction which is
evidenced by the point distributions along melting and as-
similation trends in Fig. 6, d, e.

4.2. Material composition of ores
The associations of ore minerals in metabasites are re-
lated to magmatic, metamorphic and hydrothermal pro-
cesses. There were found the relics of magmatic pentlan-
dite-chalcopyrite-pyrrhotite ores having an association of
cubic chalcopyrite - hexagonal nickel-bearing pyrrhotite

with decay structures (Fig. 7, a). Metamorphogenic pyr-
rhotite (without decay structures), chalcopyrite, arsenopy-
rite and loellengite were found with pyroxenes, hornblende,
and plagioclase (Fig. 7, b—d). The shape of the above-men-
tioned mineral grains reflects the structural-balance (Fig. 7,
b) and induction (Fig. 7, d) joint growth boundaries typ-
ical of metamorphogenic structures. The content of gold
(admixture form) in loellingite is up to 200 ppm. The re-
placement of rock-forming minerals by biotite, actinolite,
chlorite, quartz veinlets and rare K-feldspar grains is as-
sociated with hydrothermal generation of pyrrhotite and
arsenopyriye (Fig. 7, e-i). The latter are represented by
homogenous small grains occurring in bunches and vein-
lets. Arsenopyrite occurs as idiomorphic crystals in hydro-
thermal association of ore minerals together with pyrrho-
tite and chalcopyrite, forming either single grains or small
aggregates. Cobaltite and isolated occurrences of native
gold precipitation form rims around loellingite (Fig. 7, f).
A microprobe analysis showed the presence of bismuth

https://www.gt-crust.ru


https://www.gt-crust.ru

Kravchenko A.A. et al.: Geodynamics and Ore Content...

Geodynamics & Tectonophysics 2024 Volume 15 Issue 3

o1
Y e
i

%
d 7

0.12 mm i
' ; Parallel nicols

70 nm

EM image .

, EMimage

Opx+Cpx

~Act+Chl

0.16 mm
—

EM image 50 nm

Fig. 7. Micrographs of metamorphogenic-hydrothermal ores in metabasites of the Pinigin deposit.

(a) - relic magmatogenic ores - lamellar particles of pentlandite and cubanite in pyrrhotite and chalcopyrite, respectively; (b-d) - dis-
seminated metamorphogenic ores: (b) - structural-balance boundaries of chalcopyrite, ilmenite and loellingite, (c¢) - discontinuous
rim of cobaltite at the pyrrhotite-arsenopyrite boundary, (d) - loellingite and pyrrhotite joint-growth induction boundary; (e-i) vein-
let-disseminated hydrothermal ores: (e) - distribution of hydrothermal pyrrhotite-2 and arsenides along small fissures and rims of
primary silicates together with chlorite and actinolite, (f) - particle of native gold at the loellingite-cobaltite boundary, (g) - distribu-
tion of arsenopyrite-2, bismuth and gold along small fissures and boundaries in rock-forming minerals, (h) - scheelite and pyrrhotite
inclusions in a quartz veinlet, (i) - stibnite inclusion in a quartz veinlet. Mineral abbreviations after [Whitney, Evans, 2010]: Act - actino-
lite, Apy - arsenopyrite, Au - native gold, Bi - native bismuth, Ccp - chalcopyrite, Cob - cobaltite, Fsp - plagioclase, Hbl - hornblende,

IIm - ilmenite, Lo - loellingite, Mld - maldonite, Opx - orthopyroxene, Po - pyrrhotite, Sch - scheelite, Sbn - stibnite, Qz - quartz.

and tellurium minerals, as well as of stibnite and scheelite
(Fig. 7, g-i).

5. DISCUSSION
In terms of formation conditions and set of wall-
rocks and ores, ore mineralization in metabasites of the
Medvedev complex can be compared with hypozonal oro-
genic gold deposits (Fig. 8, a, b). Such deposits are char-
acterized by the early ore stage dominated by pyrrhotite,

arsenopyrite, and loellingite. It is followed by the late ore
stage which comprises gold, non-precious metals, and Bi-
containing minerals. Mineral ore deposits form at ~4.0-
5.5 kbar and 450-550 °C [Groves et al., 2020a; Zhao et
al., 2022; Li et al., 2022]. This type of deposits is usually
characterized by the ore-forming fluid source problem [Fu,
Touret, 2014; Phillips, Powell, 2009] (Fig. 8, b). The ap-
proach to solving this problem traditionally emphasizes
subduction processes (Fig. 8, c); an alternative model is
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related to the asthenospheric upwelling and reactivation
of the ancient enriched lithospheric mantle [Groves et al,,

2020a] (Fig. 8, d).

The culmination accretionary-collisional, metamor-
phic and magmatic events in the central Aldan Stanovoy
Shield are confined to the Paleoproterozoic (2.01-1.87 Ga)
[Kotov, 2003; Donskaya, 2020; Smelov, Timofeev, 2007].
From 2011+2 to 2006+3 Ma, there was an initiation of the
Fedorov island arc and formation of volcanic rocks of the
Fedorovka sequence. 1993+1 Ma is associated with the for-
mation of the Chuga and Fedorovka thrust faults as a result
of the collision between the Fedorovka volcanic arc and
the Olekma-Aldan continental microplate [Velikoslavinsky
etal, 2006; Kotov, 2003; Anisimova, 2007]; 1.97-1.95 Ga -
with the formation of granite intrusions and leucogranites
of the Dzhaltundin complex which are post-collisional rel-
ative to the collision of the Fedorovka island arc [Kotov,

2003].

It is probable that the formation of the subduction-en-
riched lithospheric mantle is related to the Fedorovka rock
sequence development and occurred prior to the forma-

tion of rocks of the Medvedev complex.
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The time interval of 1.95-1.92 Ga for the Nimnyr ter-
rane is characterized by the eastward-observed forma-
tion of an active margin of the Olekma-Aldan continental
microplate and the accumulation of volcano-sedimenta-
ry sequences east of the terrane [Kotov, 2003]. Based on
the study of xenoliths from the Precambrian metamor-
phic complexes in the Mesozoic intrusives, 1.96-1.90 Ga
terrane is presumably associated with magmatic under-
plating [Kravchenko et al., 2012]. This age overlaps with
the intrusion [Kravchenko et al.,, 2009] of 1.92 Ga dikes of
the Medvedev complex and 1.91-1.90 Ga metamorphism.
Metamorphism is characterized by the isothermal decom-
pression trend [Smelov, 1996]. 1.87 Ga ago there was the
formation of granite intrusions of the Kodar complex, most
likely corresponding to the final stages of the processes
during collision of the Aldan and Dzhugdzhur-Stanovoi con-
tinental plates [Kotov, 2003], and post-collisional dolerite
intrusion.

Ore formation in the rocks of the Medvedev complex
lasted from 1.92 to 1.87 Ga. There is no evidence for sub-
duction during this interval; it is characterized by intrusion
and metamorphism of pre-ore basites of the Medvedev
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Fig. 8. Model for the formation of hypozonal orogenic gold deposits (after [Groves et al.,, 2020a, 2020b; Zhao et al., 2022]).
(a) - conditions and features of metamorphism; (b) - ore substance sources; (¢, d) - geological structures. (b): 1 - hot spring; 2 - oro-
genic gold deposits; 3 - fluid flow; 4 - deep-seated fault; 5 - deep-seated fault deformation zone. (d): 1 - granulite facies; 2 - amphibo-
lite facies; 3 - greenschist facies; 4 - migmatites / granite gneisses; 5 - MZ granites; 6 - basic magma; 7 - dolerites.
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(Evotin district) area

Meltjlow channels in the mantle

140 km Lower boundary of the lithosphere

Fig 9. Geological-geophysical (a) [Kheraskova et al.,, 2018, simplified] and geophysical (b, c) [Goshko et al., 2015; Podgorny, Malyshev,

2006] sections along profile 3-DV.

(a): 1 -layer 1 - lower crust, heterogeneous, partially melted with ultramafic rocks; 2 - layer 2 - upper crust, metamorphosed mafic-
ultramafic rocks; 3 - layer 3 - upper crust, basic rocks with plastic flow traces formed as a result of mantle diapirism; 4 - layer 4 - upper
crust, metamorphic rocks with sedimentary cover; 5 - undissected gabbro; 6 - undissected granites and syenites. The line beneath the

sections is the lower boundary of the lithosphere.

complex and formation of post-ore non-metamorphosed
doleritic dikes. During the same interval, the metamorphic
complexes were probably brought to higher levels. The
above-described geochemical features of plume activity
and enriched lithospheric mantle melting, as well as the
features of melt assimilation, mean there is a probabili-
ty of the plume-lithosphere interaction and ore material
activation. The features revealed for the compositions of
the mantle magmatic complexes are more suitable for the
model shown in Fig. 8, d. Geophysical field imaging of domal
structures of the Nimnyr terrane (Fig. 9 a, b) and melt flow
channels in the mantle (Fig. 9, c) confirm the adequacy of
this model.

Attention is also drawn to a widespread occurrence of
placer sperrylite and platinum whose mineralogical-geo-
chemical features are indicative of potential platinum-
metal mineralization in this area, which does not exclude
the possibility of the Paleoproterozoic complex precious
metal deposition.

Multiple mantle magmatic complexes and complex geo-
logical structure of the study area necessitate further in-

vestigation of mantle events to specify mechanisms and
models of ore formation. A more accurate characteristic
of sources and geodynamic processes requires the repre-
sentative isotope-geochemical and isotope-geochronologi-
cal studies.

6. CONCLUSION

The compositional features of pre-ore and post-ore
mantle magmatic complexes imply that the most probable
source of the Paleoproterozoic ore-forming fluids in the
Nimnyr terrane was the ancient subduction-enriched litho-
spheric mantle interacting with the asthenospheric mate-
rial. The metamorphic complex formation and its related
mineralization occurred at the final collisional stage which
favored concentration of ore and its deposition on fold and
secondary schistosity sections in metabasites. The period
from 1.92 to 1.87 Ga, between formation times of gran-
ulite-facies pre-ore basites and post-ore non-metamor-
phosed dolerites, is likely to be characterized by a signifi-
cant decrease in the depth of occurrence of metamorphic
complexes and by ore formation.
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