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ABSTRACT. This work deals with the importance of studying seismicity and deep structure of the Earth’s crust in the 
region of the Baikal rift zone. The study presents a three-dimensional velocity structure of the Earth’s crust in the central 
part of Lake Baikal, obtained from the results of tomographic inversion of the travel times of P- and S-waves from more 
than 800 seismic events. Synthetic tests provide substantiation for the resolution of the tomographic inversion algorithm. 
The seismic structure of the crust was obtained to a depth of 35 km and has a direct relationship with the geological 
structure. The three-dimensional distributions of seismic P- and S-wave velocity anomalies are in good agreement with 
each other.

The sharp contrast between the anomalies may indicate a difference in the material composition of the basement of 
the Central Baikal basin. At a 15-km depth below the Selenga River delta, there is observed a strong low-velocity anomaly 
which confirms the presence of a thick sedimentary cover therein. In the basement (at depths of 20 km or greater), to the 
northeast of the intersection between the Delta fault and the Fofanov fault, there occurs a high-velocity anomaly elongated 
towards the Olkhon Island. This anomaly is probably related to a rigid block in the earth’s crust. The same depths, on 
the western side of the Baikal-Buguldeika fault, show a reduced Vp/Vs ratio: 1.56–1.65 versus 1.70–1.75 in the adjacent 
areas. This indicates another type of basement rock composition and the presence of consolidated matter there.

Besides, there has been made a more accurate hypocenter determination for further comparison between seismic 
events and active fault structures. For the central part of Lake Baikal, the distribution of seismicity mainly corresponds 
to depths of 10–22 km. The situation is different below the Selenga Delta – the only area where seismicity is observed at 
depths greater than 22 km, – which can be attributed to complex fault interactions.

The velocity anomalies discussed herein are confined to reliably identified active faults and correlate well with the 
distribution of seismicity and gas hydrate structures.
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1. INTRODUCTION
The Baikal Rift Zone (BRZ) is one of the largest continen-

tal divergent boundaries. It is characterized by active rift-
ing and the occurrence of lithospheric extension processes. 
The BRZ includes large lithospheric blocks: Siberian Plat-
form, Amur Plate, and East Sayan, Mongolian and other mi-
croplates [Logachev, 2001]. The Global Positioning System 
(GPS) data show that the Baikal rift is opening at a rate of 
3–4 mm yr [Ashurkov et al., 2011, 2016; Calais et al., 2003; 
Lukhnev et. al., 2013; Sankov et al., 2003]. The collision 
between the Indian Plate and the Eurasian Plate is evident 
in the fact that the lithosphere moves in the northeastern 
and latitudinal directions relative to the Siberian Platform. 
The Siberian Platform moves very slowly north, and the 
Amur Plate moves more rapidly southeast [Ashurkov et 
al., 2011].

No consensus exists on the causes of rifting, although 
there is no doubt that the BRZ is a tectonically active area. 
Active tectonic processes reflect the existence of a com-
plex fault system and seismicity [Logachev, 1999, 2003; 
Sherman, Levi, 1977; Levi et al., 1995, 1997; Sherman et 
al., 2012]. Continental rifting is usually accompanied by 
volcanic and magmatic activities. However, the BRZ volca-
nism evidence was only found for the Neogene period, and 
there was a decrease in volcanic activity in the Quaternary 
[Logatchev, Zorin, 1987].

The study area is confined to the Central Baikal basin 
(Fig. 1). There lies a delta of the Selenga River which is the 
largest continental delta and a depocenter of Lake Baikal, 
with about an 8 km thick sediment layer [Hutchinson et 
al., 1992; Scholz, Hutchinson, 2000]. The Selenga River 
delta is a depression with a complex fault-block structure 
and high seismic activity. According to the data on focal 
mechanisms of large earthquakes, the key role therein is 
played by the lithospheric extension processes [Misharina, 
Solonenko, 1972, 1977; Misharina et al., 1983; Melnikova, 
Radziminovich, 1998]. A complex geodynamic environ-
ment in the Selenga River delta is due to the mutually 
intersecting Delta, Fofanov and Sakhalin-Enkhaluk faults 
[Lunina et al., 2009].

This paper considers local earthquake tomography 
which allows a velocity model and earthquake hypocen-
ters to be simultaneously refined based on the P- and 
S-wave arrival times [Nolet, 1990]. For the Baikal region, 
there were created several tomographic models [Kulakov, 
1999, 2008; Mordvinova et al., 2000; Burkholder et al., 
1995; Gao et al., 2003; Petit et al., 1998; Tiberi et al., 2003; 
Yakovlev et al., 2007; Zhao et al., 2006] which have similar 
characteristics (high velocities for the Siberian Platform 
and low-velocity anomalies for the upper mantle of the 
South Baikal basin) but may differ in detail. Based on the 
results of the studies conducted using local data [Kulakov, 
1999; Petit et al., 1998], beneath the Baikal folded area, 
up to a depth of 20 km, there can be found a large nega-
tive anomaly that changes to positive one. In [Yakovlev et 
al., 2007], the regional data were used to obtain the crustal 
and upper-mantle velocity anomalies. According to the 
results obtained, the authors identify negative anomalies  

coinciding with the Cenozoic volcanic areas. The above- 
mentioned results, however, do not provide information 
on the detailed structure of the Earth’s crust in the area we 
are interested in.

This paper discusses three-dimensional velocity-struc-
ture determination of the crust in the Central Baikal basin 
by local seismic tomography with simultaneous refine-
ment of hypocenter parameters of the earthquakes. Local 
seismic tomography reveals block structure of the earth’s 
crust, thus providing insight into the understanding of 
tectonic processes in the study area. The results obtained 
herein make it possible to consider in more detail the 
crustal velocity structure of the Central Baikal, as com-
pared to previous seismic tomography studies conducted 
in the Baikal region.

2. GEOLOGICAL AND GEOPHYSICAL DESCRIPTION  
OF THE STUDY AREA

There are two major hypotheses about the formation 
of the BRZ. These are the concepts of active and passive 
rifting.

The idea of active rifting is related to the presence of 
mantle plume beneath the Baikal which causes lithospheric 
uplift and extension [Logatchev, 1993; Logatchev, Zorin, 
1987; Zorin, Turutanov, 2005]. One indication that this 
theory might be right is the existence of high heat flow – 
the heat flow in the BRZ is variable (from 40 to 200 mWt/
m2) but tends to be greater than the mean value [Golubev, 
2007; Duchkov, Sokolova, 2014]. Based on the deep seis-
mic sounding (DSS) data, evidence was also found for the 
asthenosphere low-velocity protrusion (7.7–7.8 km/s) be-
neath the Baikal which is interpreted as an anomalous 
mantle [Song et al., 1996]. In accordance with the gravi-
metric data, positive anomalies of the Bouguer reduction 
are the indicator of basic-ultrabasic igneous rock intru-
sions [Khain, Lomize, 2005; Gao et al., 1997], negative 
anomalies correspond to large-scale mantle inhomogene-
ities [Dobretsov et al., 2019].

Another factor to be considered is passive rifting. This 
model is based on plate interactions which cause the litho-
sphere extension. According to this concept, the extension 
is due to the collision between the Indian plate and the 
Eurasian plate, and to the subduction of the Pacific plate 
[Nicolas et al., 1994; Peltzer, Tapponnier, 1988; Zonenshain, 
Savostin, 1981]. There are also combined theories of the 
rift formation which imply two to three formation stages 
[Logachev, 2003; Achauer, Masson, 2002; Chemenda et 
al., 2002; Lesne et al., 2000; Mats, 2012, 2015; Petit et al., 
1998].

The Baikal basin is the largest part of the BRZ. There 
can be distinguished three main basins of Lake Baikal – 
South, Central and North [Logachev, 2003]. The estimates 
of sediment thickness reported for the Baikal basin are 
different. The seismic reflection survey (SRS) of the lake 
yielded sediment layer thicknesses ranging from 7 to 8 km 
in the North and Central basins [Hutchinson et al., 1992]. 
Seismic refraction profiles (SRP) obtained in the Central 
basin showed that the sediments therein are up to 9.5 km  
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Fig. 1. Map of relief and main structural and tectonic elements in the area of the Baikal depression.
The map shows reliably identified Pliocene-Quaternary faults [Lunina, 2016]. Numbers in circles correspond to the faults under dis-
cussion: 1 – Baikal-Buguldeika, 2 – Delta, 3 – Fofanov, 4 – Sakhalin-Enkhaluk, 5 – unnamed.
Green and red marks represent mud volcanoes and gas hydrate emissions, respectively. Fluid ejections are shown by yellow stars 
[Khlystov et al., 2018]. Seismic stations correspond to blue triangles. The herein-considered area is shown as blue dashed lines. Digital 
elevation model for Lake Baikal was taken from https://www.gebco.net/ where the data is freely available.

thick [Ten Brink, Taylor, 2002]; the greatest depth to base-
ment – up to 14 km – was obtained for the South basin 
[Suvorov, Mishen’kina, 2005].

The coast of Lake Baikal is composed of heterochronous 
rocks. The western shoreline of the Baikal is composed 
primarily of the Archean and Archean-Proterozoic base-
ment and sedimentary complexes of the Siberian Platform,  

and the eastern – by the Phanerozoic rocks of the Sayan-
Baikal Fold Belt [State Geological Map…, 2009; Gvozdkov, 
1998; Grudinin, Chuvashova, 2011]. Among the synrift 
sediments of the Baikal region are the Upper Cretaceous 
Cenozoic rocks whose accumulation period corresponds 
to rifting and Lake Baikal basin formation times [Mats, 
2012]. The Upper Cretaceous–Paleogene deposits which  
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are lacustrine or alluvial in origin occur within the Selenga 
River delta and Olkhon Island [Logachev, 1974; Mats, 2012, 
2015]. The Quaternary deposits which are widespread in 
all intermountain and submontane troughs have been de-
rived from different types of soft rocks and are of different 
geneses. A detailed outline of the Cenozoic deposits with-
in the Baikal basin is provided in [Mats et al., 2001]. In 
view of the diversity of rocks bordering the lake, in could 
be assumed that the Baikal basement has a complex un-
even-aged block structure.

The study area is confined to the Central Baikal basin. 
The important structures therein are the Delta, Fofanov 
and Sakhalin-Enkhaluk faults.

The Delta fault in the estuary part of the Selenga River 
(Fig. 1) is the major seismoactive structure there [Lunina 
et al., 2012], with normal-fault kinematics. The displace-
ment along the fault occurred under the NW-SE extension 
conditions. The activation of this fault is due to the Tsagan 
earthquake of 1862, which gave rise to the formation of 
the Proval Bay. The formation and evolution of the Proval 
Bay have been described in detail in [Shchetnikov et al., 
2012], in the context of the analysis of common morpho-
logical characteristics of the Baikal rift.

Orthogonally to the Delta fault, there runs the Fofanov 
fault (Fig. 1). This fault penetrates deeply into the crust 
up to the upper mantle [Solonenko, 1981] and is identi-
fied through the geomagnetic survey. The fault separates 
the blocks with different depths to basement; according to 
[Lunina et al., 2009, 2010], it is the right-lateral strike-slip 
fault with its highly seismic northern part.

The Sakhalin-Enkhaluk fault (Fig. 1) intersects with 
the Delta fault on the coast near the northeastern Proval 
Bay, strikes northeast, and is interpreted as a normal fault. 
It belongs to the most seismically active faults; with nu-
merous thermal springs thereon [Solonenko, 1981; Lunina 
et al., 2009].

Geodynamic complexity of the Selenga River delta is de-
termined by the mutually intersecting Delta, Fofanov and 
Sakhalin-Enkhaluk faults [Lunina et al., 2009]. It is worthy 
of note that the seismicity of these faults occurs at depths 
greater than 22 km, whereas in the rest of the Central Baikal 
basin it is confined to depths of 10–22 km [Radziminovich, 
2010; Suvorov, Tubanov, 2008]. According to the electro-
magnetic monitoring data, the Selenga River delta has a 
mosaic (block) structure with alternating uplifted and sub-
sided small blocks [Nevedrova, Epov, 2004; Lunina et al., 
2009].

The objects of interest in the avandelta of the Selenga 
River are the Posolsk Bank and Kukui Ridge. They are tec-
tonically uplifted blocks which previously were the parts 
of the surface in the Selenga River delta and are adjacent to 
the same fault [Logachev, 2003]. In [Khlystov et al., 2016], 
it is reported about an abrupt activation of seismotec-
tonic activity about 1.0–0.8 million years ago which re-
sulted in the separation of the Posolsk Bank and Kukui 
Ridge from the Selenga River delta and in their further au-
tonomous existence. On the southeast of the ridge, there 
is a canyon whose formation can be attributed to rifting  

processes which is evidenced by sharp river bends and 
step-like canyon slopes. The Kukui Canyon is also known 
for a large concentration of mud volcanoes and gas hy-
drates [Khlystov et al., 2018].

The Central Baikal basin is characterized by high seis-
micity. The most seismically active area is the Selenga River 
delta. Seismicity distribution in the Baikal area has been 
considered in many studies since the 1960s (in the works 
of Treskov, Misharina Golenetsky, Vertlib, Krylov and other 
scientists). The studies provide evidence that the ma-
jor earthquakes are confined to depth interval 0–10 km 
[Krylov, 1980] or 5–20 km [Golenetsky, Perevalova, 1988]; 
in some of the studies, the source depths are estimated at 
30 [Déverchère et al., 1991] or even at 40 km [Déverchère 
et al., 2001; Gileva et al., 2000]. In [Suvorov, Tubanov, 2008], 
there was obtained the distribution of seismic sources 
beneath the Central Baikal in the context of the veloci-
ty model based on the DSS data which made it possible 
to identify a seismically active layer going down under 
the Selenga depression. A similar result was provided in 
[Radziminovich, 2010].

3. SEISMIC TOMOGRAPHY DATA AND METHOD
This paper deals with travel times for straight waves 

(Pg and Sg) recorded at 20 seismic stations. These sta-
tions belong to the Baikal and Buryat branches of the FRC 
UGS RAS. The seismological network is extended along 
the Baikal and characterized by an irregular distribution 
of seismic stations. The processing has been performed 
on the data catalogue containing the travel times of P- and 
S-waves from local earthquakes over the period 2001–
2011. The energy class K for this data sample ranges from 
6.5 to 12.2. Fig. 2 shows a seismological network configu-
ration and seismicity distribution. The processing involved 
seismic records obtained from at least 5 stations located 
on a maximum distance of 100 km away from the epicen-
ter. After the catalog processing, there were 826 events 
left, with the travel times of Pg-waves (6406) и Sg-waves 
(6461).

The paper deals with LOTOS – Local Tomography Soft-
ware [Koulakov, 2009]. It allows a 3D velocity model and 
earthquake hypocenters to be simultaneously refined based 
on P- and S-wave travel times. Travel time calculations and 
tomographic inversion were based on ray tracing. The to-
mographic inversion is performed in several iterations, 
each of which includes more accurate hypocenter deter-
mination, and tomographic matrix calculation and inver-
sion. More details on more concrete implementation of the 
algorithms are provided in [Kulakov, 1999; Koulakov et al., 
2002]. The iterative process continues as long as disper-
sion misfit is constant (decreases by less than 3–5 %). In 
the present work, the inversion process converged usually 
after three iterations.

Fig. 3 shows the distribution of rays in the study area 
and the nodal parametrization of velocity model. An area 
with sufficient ray coverage implies the in-principle pos-
sibility of reconstructing velocity model. It is evident that 
the coverage area includes the Central basin, northern  
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Fig. 2. Distribution of seismicity in the study area (the epicenters are shown after their more precise determination during tomo-
graphic inversion).
Triangles are seismic stations of the Buryat Branch of the FRC UGS RAS (* – the regional (local) code of the station), squares are the 
stations of the Baikal Branch of the FRC UGS RAS. In the insert, the rectangle shows the studied area.

South basin, and a part of the southeastern coast. It has to 
be noted that the LOTOS algorithm puts emphasis on re-
ducing the influence of the distribution of nodes of param-
etrization grid on the results. To do this, there has been 
performed an inversion using different grid orientations 
(0°, 22°, 45° and 67°in our case). After the results for dif-
ferent grid orientations are calculated, they are summa-
rized in a single model reducing any artifacts related to 
grid orientation.

The result of tomographic inversion depends on the 
choice of regularization parameters of smoothing and am-
plitude damping. Optimal parameters are selected based 
on synthetic tests. Large parameter values ensure unique-
ness and sustainability of the solution but smooth it, thus 
reducing the level of detail of the model obtained. Small 
parameter values are the causes of unsustainability of the 
solution – in the model there appear velocity anomalies 
which have little impact on travel times as they are not 
driven by data. In App. 1 there are presented the results  

of checkboard tests. First, these tests allow determining 
optimal regularization parameters (absence of any other 
anomalies in the models obtained). Second, they allow de-
termining resolution of the observation system involved, 
i.e. the area and the dimensions of velocity anomalies which 
are reliably reconstructed for the available seismicity dis-
tribution and station location. Based on the test results, 
it was concluded that interpretable anomalies are those 
which have horizontal dimensions 30 km or greater (App. 1, 
Fig. 1.1).

For ray tomography it is important to choose the ini-
tial velocity model because its proximity to the true mod-
el provides precise tomography inversion results. It was 
based on the one-dimensional model of the Earth’s crust 
derived from the DSS method [Song et al., 1996]. Then 
the model was refined using LOTOS software tools (the 
one- dimensional model was refined so that the velocity 
anomalies had a mean of zero at all depths. As a result, 
there was obtained the initial velocity model shown in  
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Table 1 (the velocity between the presented depths is 
linearly approximated).

4. TOMOGRAPHIC INVERSION RESULTS
At first there were obtained the preliminary results of 

earthquake hypocenters from the one-dimensional mod-
el, and then there were performed three iterations of to-
mographic inversion. Root-mean-square misfits of P- and 
S-wave travel times after each of the iterations are pre-
sented in Table 2. After the third iteration, the misfits re-
duced to 0.22 s (for P-waves) and 0.30 s (for S-waves).

Tomographic inversion produced the three-dimensional 
distribution of P- and S-wave velocity anomalies shown on 
horizontal (Fig. 4) and vertical (Figs 5, 6) sections. The fig-
ures show that most of the P- and S-wave velocity anom-
alies correspond well to each other. The dots in Fig. 4, 5 
and 6 stand for the refined locations of sources (after in-
version); the vertical sections (see Fig. 5; Fig. 6) show the 
sources in a 7-km wide layer around corresponding sec-
tions (refined epicenters for the whole catalogue are shown 
in Fig. 2). Table 3 presents the distribution of sources along 
the depth. It can be seen that most of the earthquakes occur 
at depths of 10–22 km and coincide with the estimates re-
ported in [Radziminovich, 2010; Suvorov, Tubanov, 2008]. 
The Selenga River delta exhibits the concentration of earth-
quakes with hypocenter depths to 30 km. An earthquake 
near Zarechye (ZRHB) station occurred at a depth of >60 km 
(see Fig. 2).

5. RESULTS AND DISCUSSION
Fig. 7 presents a comparison between the results ob-

tained for velocity anomalies and reliably identified faults 
[Lunina, 2016].

Anomalous area 1 shown in Fig. 7 is located northwest 
of the Selenga River delta. According to the seismic data  

Fig. 3. Distribution of P- and S-wave rays (gray lines), seismic stations (blue triangles) and nodes of parameterization grids with ori-
entation of 0° (red dots).

[Hutchinson et al., 1992], there lies the subsided block of 
the acoustic basement with a sediment thickness of about 
7.5 km. On the southeast, this area is bounded by the Baikal- 
Buguldeika fault – a normal-fault [Lunina, 2016] which is 
considered active since it is confined to both seismicity 
and gas hydrate structures [Khlystov et al., 2016, 2018]. 
The fault separates area 1 from the adjacent low-rate block 
(from S-velocity anomalies) which is characterized by low 
seismicity (in accordance with the regional catalog data over 
the period 1960–2021); there is also located the Posolsk 
Bank. A new result is that the area shows an anomalously 
low Vp/Vs ratio (1.56–1.65) as compared to the surrounding 
rock (1.70–1.75) (Fig. 7, с). Therefore, it can be concluded 
that the blocks on either side of the Baikal-Buguldeika fault 
not only move relative to each other but also differ in their 
physical composition.

Area 2 is located northeast of the intersection between 
the Delta and Fofanov faults and elongated towards the 
Olkhon Island (Fig. 7). According to the seismic tomogra-
phy data, there lies a high-velocity rigid crustal block at a 
depth of about 20 km which is presumably composed of 
the rocks different from the host rock in composition.

This anomalous block and seismicity distribution there-
around can be seen clearly in the vertical section along 
Profile 5 (see Figs 5, 6). The block is ∼80−100 km long and 
∼20 km wide and lies at depths of 15 to 35 km. Seismicity 
is mostly concentrated on the boundary between the low- 
and high-wave-velocity areas at depths of 15 to 20 km.

Seismicity (hypocenter) distribution analysis shows that 
there occurs a complex interaction between this block and 
adjacent structures (Fig. 7). Seismicity is concentrated along 
the southeastern margin of the rigid block. There is a clear-
ly defined arc structure similar to the Baikal-Buguldeika 
fault mentioned above. It has a submeridional strike and 
is formed by the southern Delta fault and Fault 5 in Fig. 7  
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Fig. 4. P- and S-velocity anomalies from tomographic inversion.
Horizontal sections at depths of 10 km (а, b) and 20 km (c, d); dots denote the events at corresponding depths; triangles denote seis-
mic-station locations. The location of the profiles for constructing vertical sections is indicated in the fragment (b).

Table 1. Initial Velocity Model

Table 2. Average misfits of arrival times (s)

Table 3. Depth distribution of seismicity after tomographic 
inversion

Depth, km Vp, km/s Vs, km/s
–2 5.14 2.99

5 5.67 3.40

10 6.03 3.54

15 6.20 3.60

20 6.34 3.67

30 6.49 3.82

40 7.13 4.15

Iteration No dtP, s dtS, s
1 0.29 0.49
2 0.22 0.31
3 0.22 0.30

Depth, km Number of events
0–10 65
10–22 593
22–40 167
>60 1
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Fig. 5. P-velocity anomalies from tomographic inversion (vertical sections). Dots denote the events near the section (within a 7-km 
layer); triangles denote seismic-station locations. Vertical section lines are shown in the upper right panel.

Fig. 6. S-velocity anomalies from tomographic inversion (vertical sections).
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which continues into the Baikal water area and is traced by 
exposed gas hydrates and underwater volcanic eruptions 
[Khlystov et al., 2018]. There also lies the Kukui Canyon – 
the longest canyon on the Baikal bottom – whose complex 
tortuous shape can be partially attributed to the fault pat-
tern [Khlystov et al., 2016].

Not all southeastern margin of the high-velocity block 
is seismically active. Seismicity is only observed for the 
southern Delta fault. This appears to be related to the 
Sakhalin-Enkhaluk fault cutting thorough the high-veloci-
ty block in the southwestern direction. The block seems to 
be fractured along this line since the seismicity is now oc-
curring throughout the block rather than on the block mar-
gin. According to [Solonenko, 1981; Lunina et al., 2009], 
there are many thermal springs along this fault. Besides,  

seismicity is observed on the southwestern margin of the 
Fofanov fault.

Therefore, this implies a complex interaction between 
the crustal blocks therein which may have resulted from 
the overlapping stages in the development of the Baikal 
rift [Mats, 2012]. The feature of the interaction considered 
is emphasized by large depths of the hypocenters confined 
to the Delta and Fofanov faults (22–30 km), but there is 
almost no earthquake activity at these depths in the rest of 
the study area.

The revealed contrast between P- and S-velocity anom-
alies (sections for 20 km depth in Fig. 4) generally indicate 
a significant difference in composition of basement rocks 
in the Baikal basin. The geological studies show that the 
Baikal borders are composed of heterochronous rocks. For  

Fig. 7. Interpretation of the results of tomographic inversion.
Vp (а) and Vs (b) anomalies and the Vp/Vs ratio (c) at a depth of 20 km; the dots stand for seismicity around 20-km depth. The 
lines show the reliably identified Pliocene-Quaternary faults [Lunina, 2016]. Numbers in circles correspond to the faults: 1 – Baikal-
Buguldeika, 2 – Delta, 3 – Fofanov, 4 – Sakhalin-Enkhaluk, 5 – unnamed. The discussed regions are shown by red contours.
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example, on the western coast near area 1 there are out-
crops of the Archean-Proterozoic migmatites and crystal-
line schists alternating with the Neoproterozoic sediments. 
The eastern coast of the Baikal is mostly composed of the 
Phanerozoic rocks [State Geological Map…, 2009; Gvozdkov, 
1998; Grudinin, Chuvashova, 2011]. In the Selenga River 
delta and the Olkhon Island, there occur Upper Cretaceous–
Paleogene lacustrine and alluvial deposits [Logachev, 1974; 
Mats, 2012, 2015]. Therefore, a wide variety of lake-bor-
dering rocks suggests that the Baikal basement has a com-
plex heterochronous block structure. This allows inter-
preting the revealed contrasts between seismic-wave ve-
locity anomalies and their relationship as heterochronous 
blocks.

6. CONCLUSION
Seismic tomography method presented herein yielded 

the three-dimensional distribution of P- and S-velocity 
anomalies and provided better location estimates for hy-
pocenters in the Central Baikal basin. The study was con-
ducted based on the catalog of regional seismic events 
recorded in 2001–2012. A data set provides sufficient ray 
coverage of the study area and reliable identification of 
anomalies with horizontal dimensions from 30 km.

Northeast of the intersection between the Delta fault 
and the Fofanov fault, there is a high-velocity anomaly 
elongated towards the Olkhon Island. This anomalous area 
is interpreted as a rigid crustal block. This block is 80–
100 km long and about 20 km wide, with a depth of occur-
rence from 15 to 35 km. This block is cutting through the 
Sakhalin-Enkhaluk fault, which provides a complex inter-
action between the crustal blocks therein. The feature of 
interaction is emphasized by large depths of the hypocen-
ters confined to the Delta fault and the Fofanov fault, but 
there are almost no earthquakes that occur at these depths 
in the rest of the area.

In the southwest of the study area, there is a range 
of high S-wave velocities. Anomalously low Vp/Vs ratios 
imply that this anomaly is a basement block which dif-
fers from the surrounding rock in material composition. 
This block underwent subsidence, as can be inferred from 
a 7.5-km increase in the thickness of bottom sediments 
thereabove. In the southeast, the block is bounded by the 
Baikal-Buguldeika fault which presumably separates het-
erochronous basement blocks.

Thus, there were obtained new data on the block struc-
ture of the Earth’s crust beneath the Baikal basin that might 
be used for constructing geological and tectonic models of 
the Baikal rift.
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APPENDIX 1

Repeated testing was performed to validate the inver-
sion results for the experimental data.

The resolution was validated through synthetic testing 
with chess-board anomalies. The procedure of this test 
is as follows. There has been created a synthetic velocity 
model which consists of alternating positive and negative 
anomalies of the prescribed size and looks like a chess 
board. The direct model-related problem to be solved is 
to calculate travel times for distribution of seismicity and 
location of stations from the catalog studied. After that, an 
inverse problem in tomography is to be solved based on 
the travel times obtained.

There have been conducted checkerboard tests with 
different sizes of anomalies in the amplitude of ±5 % for 
checking the horizontal resolution. Fig. 1 shows the re-
sults for anomalies with dimensions of 30×30 km. It can 
be seen that amplitude and shape of the anomalies with 
such dimensions are reconstructable to a depth of 20 km 
wherever the inversion is performed. A similar test for 
anomalies with less dimensions (25×25 km) showed that 
they become vague with depth. Thus, the testing results  

allowed concluding that the anomalies with horizontal 
dimensions of 30 km and greater can be determined re-
liably to a depth of 20 km. The vertical resolution was 
checked by assigning the model along the vertical seg-
ments with alternating anomalies in the amplitude of 
±10 %, with a width of 30 km and change of sign at a depth 
of 15 km. The anomalies of such dimensions and a con-
tract transition based on sign change at depth were also 
re constructed.

Synthetic tests make it possible to choose optimal pa-
rameters for inversion performance. A sustainable solu-
tion (the absence of any other anomalies) can be based 
on the following parameter values: horizontal and vertical 
smoothing (1.0 for P-waves and 2.0 for S-waves), and am-
plitude damping (0.6 for P-waves and 1.0 for S-waves).

To estimate the reliability of identifying anomalies and 
the impact of random noise on the tomography results, 
there was a test on even and odd source numbers, with the 
inversion performed separately for these two independent 
samples from the initial catalog. The test results show a 
good correlation between the anomalies identified.

SYNTHETIC TESTS
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Fig. 1.1. The result of reconstructing synthetic anomalies of size 30×30 km for the study area at depths of 10 and 20 km.
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