Preview

Геодинамика и тектонофизика

Расширенный поиск

Макаров Павел Васильевич

 Макаров Павел Васильевич

 профессор, доктор физ.-мат. наук

 Институт физики прочности и материаловедения, Томск, Россия

 ResearchGate  ORCID

 

 

 

Область научных интересов - физика и механика процессов деформации гетерогенных материалов и конструкций при различных условиях нагружения. С конца 60-х занимался вопросами моделирования процессов высокоскоростной деформации материалов, в т. ч. при их ударно-волновом нагружении. Разработал модели и методы численного моделирования механического поведения градиентных металлокерамических материалов и материалов с градиентными покрытиями. Разрабатывал релаксационные определяющие уравнений с дислокационной кинетикой пластических сдвигов, что позволило при моделировании процессов распространения ударных волн в материалах эффективно учитывать вязкие, релаксационные и диссипативные свойства реальных сред, а также сложные эффекты сдвиговой прочности материалов в ударных волнах. В дальнейшем занимался физической теорий пластичности и разрушения нагружаемых материалов, что привело к разработке иерархических моделей деформации и разрушения материалов на основе рассмотрения ведущих физических механизмов, развивающихся на различных масштабных уровнях. Это новое направление, развиваемое в научной школе академика РАН В.Е. Панина, получило название "Физическая мезомеханика материалов". В рамках этой школы П.В.Макаров занимается разработкой моделей мезоуровня и численным моделированием процессов деформации и разрушения на мезо и макроуровнях. Им предложен новый критерий пластичности на мезоуровне, рассмотрено поведение под нагрузкой материалов с различными типами упрочняющих покрытий и способы формирования градиентных покрытий, численно исследованы деформационные процессы на микро- и мезо- уровнях в металлах при ударноволновом нагружении. Особое место занимает приложение этого подхода к решению задач геодинамики и тектоники, которое изучается в рамках интеграционных проектов институтов СО РАН и проектов РФФИ, например: "Стратегия прогноза землетрясений в Байкальской рифтовой зоне (2000-2002). В настоящее время занимается созданием наиболее реалистичного сценария зарождения и развития рифтовых зон Земли и конкретно Байкальской рифтовой зоны.

 

Публикации 2010–2023


  • Makarov P.V., Peryshkin A.Y., 2022. Modeling of Shock Wave Effects in Metals on the Basis of a Relaxation Model with Dislocation Kinetics of Plastic Shears. RUSSIAN PHYSICS JOURNAL 65, 535–544. https://doi.org/10.1007/s11182-022-02665-7
  • Makarov P.V., Peryshkin A.Yu., 2022. Simulation of Shock-Wave Effects in Metals Based on a Relaxation Model with Dislocation Kinetics of Plastic Shears. AIP CONFERENCE PROCEEDINGS 2509, 020128. http://doi.org/10.1063/5.0084589
  • Khon Y.A., Makarov P.V., 2021. To the Theory of Formation of Large Cracks in Brittle Solids. PHYSICS OF THE SOLID STATE 63, 1009–1013. http://doi.org/10.1134/S1063783421070106
  • Makarov P.V., Khon Y.A., 2021. Autosoliton View of the Seismic Process. Part 1. Possibility of Generation and Propagation of Slow Deformation Autosoliton Disturbances in Geomedia. PHYSICAL MESOMECHANICS 24(4), 363–374. http://doi.org/10.1134/S1029959921040032
  • Makarov P.V., Smolin I.Y., Khon Y.A., Eremin M.O., Bakeev R.A., Peryshkin A.Y., Zimina V.A., Chirkov A., Kazakbaeva A.A., Akhmetov A.Z., 2021. Autosoliton View of the Seismic Process. Part 2. Possibility of Generation and Propagation of Slow Deformation Autosoliton Disturbances in Geomedia. PHYSICAL MESOMECHANICS 24(4), 375–390. http://doi.org/10.1134/S1029959921040044
  • Makarov P.V., 2021. The Model of Dynamic Stress Relaxation of Elastoplastic Materials. RUSSIAN PHYSICS JOURNAL 63, 1876–1884. http://doi.org/10.1007/s11182-021-02245-1
  • Makarov P.V., Smolin I.Y., Peryshkin A.Y., Kulkov A.S., Bakeev R.A., 2021. Experimental and Numerical Investigation of the Catastrophic Stage of Failure on Different Scales from Rock Sample to Coal Mine. PHYSICAL MESOMECHANICS 24(2), 155–165. http://doi.org/10.1134/S1029959921020053
  • Makarov P.V., Smolin I.Yu., Zimina V.A., 2021. The Structure of Deformation Autosoliton Fronts in Rocks and Geomedia. GEODYNAMICS & TECTONOPHYSICS 12(1), 100–111. http://doi.org/10.5800/GT-2021-12-1-0515
  • Makarov P.V., 2020. Relaxation Modeling of Dynamic Effects in Loaded Elastic-Plastic Media. AIP CONFERENCE PROCEEDINGS 2310, 020192. http://doi.org/10.1063/5.0034606
  • Makarov P.V., Peryshkin A.Yu., 2020. Propagation of an Intrafault Deformation Autosoliton Disturbance in Constrained Conditions. AIP CONFERENCE PROCEEDINGS 2310, 020193. http://doi.org/10.1063/5.0034635
  • Kazakbaeva A.A., Smolin I.Yu., Makarov P.V., 2020. Features of Propagation of Slow Deformation Perturbations in Geomedia with Faults. JOURNAL OF PHYSICS: CONFERENCE SERIES 1611(1), 012067. http://doi.org/10.1088/1742-6596/1611/1/012067
  • Makarov P.V., Bakeev R.A., Peryshkin A.Y., Zhukov A.S., Ziatdinov M.K., Promakhov V.V., 2019. Modelling of the Deformation and Destruction of a TiNi-TiB2 Metal-Ceramic Composite Fabricated by Direct Laser Deposition. ENGINEERING FRACTURE MECHANICS 222, 106712. http://doi.org/10.1016/j.engfracmech.2019.106712
  • Makarov P.V., Bakeev R.A., Promakhov V.V., Zhukov A.S., 2019. Mechanisms of Mesoscopic Fracture of TiNi-TiB2 Metal-Ceramic Composite. AIP CONFERENCE PROCEEDINGS 2167, 020209. http://doi.org/10.1063/1.5132076
  • Makarov P.V., Peryshkin A.Yu., 2019. Evolution of Views on the Physical Nature of Slow Deformation Disturbances in Geomediums. AIP CONFERENCE PROCEEDINGS 2167, 020212. http://doi.org/10.1063/1.5132079
  • Makarov P.V., 2019. Block Structure and Fracture Scales of Rock Masses and Geomedia. AIP CONFERENCE PROCEEDINGS 2167, 020207. http://doi.org/10.1063/1.5132074
  • Eremin M.O., Makarov P.V., 2019. Features of the Blow-Up Mode at Failure of Alumina Ceramics Subjected to Three-Point Bending. AIP CONFERENCE PROCEEDINGS 2167, 020085. http://doi.org/10.1063/1.5131952
  • Smolin I.Y., Makarov P.V., Bakeev R.A., 2019. Role of the Mesoscopic Rotation Modes of Deformation in Formation of Macroscopic Stress-Strain Curves. AIP CONFERENCE PROCEEDINGS 2167, 020344. http://doi.org/10.1063/1.5132211
  • Makarov P.V., Peryshkin A.Yu., 2019. Autosoliton Model of Slow Deformation Processes in Active Media. AIP CONFERENCE PROCEEDINGS 2167, 020210. http://doi.org/10.1063/1.5132077
  • Makarov P.V., 2019. Special Features of Structural Changes in Shock-Loaded Metals. AIP CONFERENCE PROCEEDINGS 2167, 020208. http://doi.org/10.1063/1.5132075
  • Akhmetov A.Zh., Smolin I.Yu., Makarov P.V., 2019. Computer Analysis of the Stress State in the Yenisei Ridge. AIP CONFERENCE PROCEEDINGS 2167, 020005. http://doi.org/10.1063/1.5131872
  • Makarov P.V., Peryshkin A.Yu., 2019. Autosolitons in Geomedia. AIP CONFERENCE PROCEEDINGS 2167, 020211. http://doi.org/10.1063/1.5132078
  • Eremin M.O., Makarov P.V., 2019. Common Regularities in Failure of Rocks, Rock Mass, and Earth’s Crust. Statistical Analysis. AIP CONFERENCE PROCEEDINGS 2167, 020084. http://doi.org/10.1063/1.5131951
  • Makarov P.V., Bakeev R.A., Smolin I.Y., 2019. Modeling of Localized Inelastic Deformation at the Mesoscale with Account for the Local Lattice Curvature in the Framework of the Asymmetric Cosserat Theory. PHYSICAL MESOMECHANICS 22(5), 392–401. http://doi.org/10.1134/S1029959919050060
  • Eremin M.O., Makarov P.V., 2019. Mathematical Modeling of Stress-Strain Evolution in the Rock Mass around a Mine Opening. Evaluation of the Steps of First Roof Caving at Different Thicknesses of the Main Roof. PHYSICAL MESOMECHANICS 22(4), 287–295. http://doi.org/10.1134/S1029959919040040
  • Akhmetov A., Makarov P., Smolin I., Peryshkin A., 2019. Modeling Modern Geotectonic Processes of the Siberian Platform and Its Margins. In: G. Kocharyan, A. Lyakhov (Eds), Trigger Effects in Geosystems. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham, p. 3–11. http://doi.org/10.1007/978-3-030-31970-0_1
  • Eremin M.O., Smolin Y.I., Makarov P.V., Eremina G.M., 2018. Spatial-Temporal Features of Deformation and Fracture of Cenozoic Sedimentations in the Epicentral Zone of the Chuya Earthquake. AIP CONFERENCE PROCEEDINGS 2053, 040019. http://doi.org/10.1063/1.5084457
  • Akhmetov Z.A., Smolin Y.I., Kulkov A.S., Makarov P.V., 2018. Mesoscale Modeling of Deformation and Fracture of Rocks under Different Types of Loading. AIP CONFERENCE PROCEEDINGS 2053, 040002. http://doi.org/10.1063/1.5084440
  • Smolin Y.I., Kulkov A.S., Mikushina V.A., Makarov P.V., Krasnoveikin V.A., 2018. Analysis of Dynamic Response of Ceramic Specimens at Fracture. AIP CONFERENCE PROCEEDINGS 2053, 020015. http://doi.org/10.1063/1.5084361
  • Makarov P.V., Peryshkin A.Yu., 2018. Numerical Study of the Process of Generation and Propagation of Slow Deformation Waves in Elastic-Plastic Media. AIP CONFERENCE PROCEEDINGS 2053, 040056. http://doi.org/10.1063/1.5084494
  • Smolin I.Y., Makarov P.V., Kulkov A.S., Eremin M.O., Bakeev R.A., 2018. Blow-Up Modes in Fracture of Rock Samples and Earth’s Crust Elements. PHYSICAL MESOMECHANICS 21(4), 297–304. http://doi.org/10.1134/S1029959918040033
  • Makarov P.V., Eremin M.O., 2018. Rock Mass as a Nonlinear Dynamic System. Mathematical Modeling of Stress-Strain State Evolution in the Rock Mass around a Mine Opening. PHYSICAL MESOMECHANICS 21(4), 283–296. http://doi.org/10.1134/S1029959918040021
  • Smolin I.Yu., Makarov P.V., Kulkov A.S., Eremin M.O., Tunda V.A., Mikushina V.A., 2018. Statistical Peculiarities of the Mechanical Response of Loaded Solids at the Pre-fracture Stage. PROCEDIA STRUCTURAL INTEGRITY 13, 1059–1064. http://doi.org/10.1016/j.prostr.2018.12.223
  • Eremin M.O., Makarov P.V., 2018. Numerical Modelling of Main Shock and Aftershock Line of Chuya Earthquake 27.09.2003, Altay, Russia. In: W. Wu, Hs. Yu (Eds), Proceedings of China-Europe Conference on Geotechnical Engineering. Springer Series in Geomechanics and Geoengineering. Springer, Cham, p. 1462–1465. http://doi.org/10.1007/978-3-319-97115-5_123
  • Makarov P.V., Khon Yu.A., Peryshkin A.Yu., 2018. Slow Deformation Fronts: Model and Features of Distribution. GEODYNAMICS & TECTONOPHYSICS 9(3), 755–769. http://doi.org/10.5800/GT-2018-9-3-0370
  • Makarov P.V., Peryshkin A.Y., 2017. Slow Motions as Inelastic Strain Autowaves in Ductile and Brittle Media. PHYSICAL MESOMECHANICS 20(2), 209–221. https://doi.org/10.1134/S1029959917020114
  • Eremin M.O., Makarov P.V., 2017. Triggering Effect of Mining at Different Horizons in the Rock Mass with Excavations. Mathematical Modeling. AIP CONFERENCE PROCEEDINGS 1909, 020042. http://doi.org/10.1063/1.5013723
  • Smolin I.Y., Kulkov A.S., Makarov P.V., Tunda V.A., Krasnoveikin V.A., Eremin M.O., Bakeev R.A., 2017. Study of Deformation Evolution during Failure of Rock Specimens Using Laser-Based Vibration Measurements. AIP CONFERENCE PROCEEDINGS 1909, 020207. http://doi.org/10.1063/1.5013888
  • Makarov P.V., Peryshkin A.Y., 2016. The Role of Slow Deformation Waves in the Formation of Fracture Foci. AIP CONFERENCE PROCEEDINGS 1785, 030013. http://doi.org/10.1063/1.4967034
  • Makarov P.V., 2016. Paradoxes of High and Low Velocities in Modern Geodynamics. AIP CONFERENCE PROCEEDINGS 1783, 020145. http://doi.org/10.1063/1.4966438
  • Smolin I.Y., Kulkov A.S., Makarov P.V., Eremin M.O., Bakeev R.A., Krasnoveykin V.A., 2016. Blow-up Regimes in Failure of Rock Specimens. AIP CONFERENCE PROCEEDINGS 1783, 020215. http://doi.org/10.1063/1.4966509
  • Makarov P.V., Peryshkin A.Y., 2016. Mathematical Model and Numerical Simulation of Slow Deformation Waves in the Earth’s Crust Structural Elements. AIP CONFERENCE PROCEEDINGS 1783, 020146. http://doi.org/10.1063/1.4966439
  • Eremin M.O., Makarov P.V., 2016. Fractal Characteristics of Seismic Process in Rock Mass Surrounding the Excavation at Mining. Mathematical Modelling and Analysis. AIP CONFERENCE PROCEEDINGS 1783, 020048. http://doi.org/10.1063/1.4966341
  • Eremin M.O., Makarov P.V., 2016. Estimation of General and Set Steps of Roof Caving in Rock Mass with Excavations at Mining. Numerical Modelling. IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING 124(1), 012051. http://doi.org/10.1088/1757-899X/124/1/012051
  • Smolin I.Y., Makarov P.V., Eremin M.O., Matyko K.S., 2016. Numerical Simulation of Mesomechanical Behavior of Porous Brittle Materials. PROCEDIA STRUCTURAL INTEGRITY 2, 3353–3360. http://doi.org/10.1016/j.prostr.2016.06.418
  • Makarov P.V., Bakeev R.A., 2015. Simulation of Spallation Life of Metals in Relation to Operating Stresses in the Nanosecond Loading Time Range. AIP CONFERENCE PROCEEDINGS 1683, 020134. http://doi.org/10.1063/1.4932824
  • Makarov P.V., Bakeev R.A., Shcherbakov I.V., 2015. Simulation of Elastic-Plastic Flow Curves of Aluminum Alloys Using Models of Dislocation Kinetics of Shears and Damage Accumulation. AIP CONFERENCE PROCEEDINGS 1683, 020137. http://doi.org/10.1063/1.4932827
  • Makarov P.V., Eremin M.O., Peryshkin A.Y., 2015. Fundamental Basics for Prognosis Methods of Dangerous Dynamic Phenomena in Rock Mass with Excavations. AIP CONFERENCE PROCEEDINGS 1683, 020135. http://doi.org/10.1063/1.4932825
  • Kulkov A.S., Makarov P.V., Eremin M.O., Skripnyak V.A., Kozulin A.A., 2015. Defining Time Values of Prefracture of Brittle Samples versus Actual Loading in Three Point Bend Tests. AIP CONFERENCE PROCEEDINGS 1683, 020110. http://doi.org/10.1063/1.4932800
  • Makarov P.V., Peryshkin A.Y., 2015. Modeling “Slow Movements”-Auto Waves of Non-Elastic Deformation in Ductile and Brittle Materials and Media. AIP CONFERENCE PROCEEDINGS 1683, 020136. http://doi.org/10.1063/1.4932826
  • Eremin M.O., Makarov P.V., Peryshkin A.Y., Evtushenko E.P., Orlov S.A., 2015. Modelling of Processes of Damage Accumulation and Multiscale Fracture in Rock Mass with Excavations at Mining. AIP CONFERENCE PROCEEDINGS 1683, 020048. http://doi.org/10.1063/1.4932738
  • Peryshkin A.Yu., Makarov P.V., Eremin M.O., 2014. Numerical Simulation of Tectonic Plates Motion and Seismic Process in Central Asia. AIP CONFERENCE PROCEEDINGS 1623, 487–490. http://dx.doi.org/10.1063/1.4898988
  • Makarov P.V., Eremin M.O., Kostandov Y.A., 2014. Prefracture Time of Gabbro Specimens in a Damage Accumulation Model. PHYSICAL MESOMECHANICS 17(3), 199–203. http://doi.org/10.1134/S1029959914030047
  • Smolin I.Yu., Eremin M.O., Makarov P.V., Evtushenko E.P., Kulkov S.N., Buyakova S.P., 2014. Brittle Porous Material Mesovolume Structure Models and Simulation of Their Mechanical Properties. AIP CONFERENCE PROCEEDINGS 1623, 595–598. http://doi.org/10.1063/1.4899015
  • Kostandov Yu.A., Makarov P.V., Eremin M.O., 2014. Experimental and Numerical Study of Quasi-Brittle Fracture of Rocks. AIP CONFERENCE PROCEEDINGS 1623, 303–306. http://doi.org/10.1063/1.4898942
  • Cherepov A.A., Eremin M.O., Makarov P.V., Peryshkin A.Yu., 2014. A Possibilities of Dangerous Dynamic Phenomena Prediction in a Rock Mass Surrounding the Excavations. AIP CONFERENCE PROCEEDINGS 1623, 87–90. http://doi.org/10.1063/1.4898889
  • Makarov P.V., 2014. Geomedium as a Nonlinear Dynamic System. An Evolutionary Concept of Earthquake Development. AIP CONFERENCE PROCEEDINGS 1623, 395–398. http://doi.org/10.1063/1.4898965
  • Makarov P.V., Eremin M.O., 2013. Fracture Model of Brittle and Quasibrittle Materials and Geomedia. PHYSICAL MESOMECHANICS 16(3), 207–226. http://doi.org/10.1134/S1029959913030041
  • Kostandov Yu.A., Makarov P.V., Eremin M.O., Smolin I.Yu., Shipovskii I.E., 2013. Fracture of Compressed Brittle Bodies with a Crack. INTERNATIONAL APPLIED MECHANICS 49, 95–101. http://doi.org/10.1007/s10778-013-0555-0
  • Makarov P.V., Eremin M.O., 2013. The Numerical Simulation of Ceramic Composites Failure at Axial Compression. FRATTURA ED INTEGRITA STRUTTURALE 7(24), 127–137. http://doi.org/10.3221/IGF-ESIS.24.14
  • Makarov P.V., 2011. Resonance Structure and Inelastic Strain and Defect Localization in Loaded Media. PHYSICAL MESOMECHANICS 14(5–6), 297–307. http://doi.org/10.1016/j.physme.2011.12.008
  • Makarov V.S., Makarov P.V., 2011. On the Enumeration of Archimedean Polyhedra in the Lobachevsky Space. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS 275, 90–117. http://doi.org/10.1134/S0081543811080062
  • Makarov P.V., 2010. Self-Organized Criticality of Deformation and Prospects for Fracture Prediction. PHYSICAL MESOMECHANICS 13(5–6), 292–305. http://doi.org/10.1016/j.physme.2010.11.010